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Abstract.
Networks with complex topology describe systems as diverse as the cell or the World Wide Web.

The emergence of these networks is driven by self-organizing processes that are governed by simple
but generic laws. In the last three years it became clear that many complex networks, such as the
Internet, the cell, or the world wide web, share the same large-scale topology. Here we review recent
advances in the characterization of complex networks, focusing the emergence of the scale-free and
the hierarchical architecture. We also present empirical results to demonstrate that the scale-free and
the hierarchical property are shared by a wide range of complex networks. Finally, we discuss the
impact of the network topology on our ability to stop the spread of viruses in complex networks.

INTRODUCTION

The behavior of many natural and social systems is fundamentally determined by the
interwovenweb through which the system’s constituents interact with each other [1,
2, 3]. For example, the cell’s metabolism is maintained by a cellular network, whose
nodes are substrates and links are chemical reactions [4, 5, 6, 7, 8]. But equally complex
webs describe human societies, whose nodes are individuals and links represent social
interactions [9, 10]; the World Wide Web (WWW) [11, 12, 13, 14] whose nodes are
Web documents connected by URL links; the scientific literature, whose nodes are
publications and links are citations [15, 16], or the language, whose nodes are words
and links represent various syntaxical or grammatical relationships between them [17,
18, 19, 20]. The networks describing these systems constantly evolve by the addition
and removal of new nodes and links. Due to the diversity and the large number of
the nodes and interactions, until recently the topology of these evolving networks was
largely unknown and unexplored. Yet, the inability of contemporary science to address
the properties of complex networks limited advances in many disciplines, including
molecular biology, computer science, ecology and social sciences.

Recent results on the topology of real networks indicate that the apparent randomness
of complex systems with many degrees of freedom hides generic mechanisms and
order that are crucial to the understanding ofthe interwoven world surrounding us. By
reviewing some advances in the area we wish to convey the potential for understanding
complex systems through the evolution of the networks behind them.
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NETWORK MODELS

Random Networks

While graph theory initially focused on regular graphs, since the 1950’s large net-
works with no apparent design principles were described as random graphs [21], pro-
posed as the simplest and most straightforward realization of a complex network. Ac-
cording to the Erd̋os-Rényi (ER) model of random graphs [22], we start withN nodes
and connect every pair of nodes with probabilityp, creating a graph with approximately
pN(N −1)/2 edges distributed randomly (Fig. 1). This model has guided our thinking
about complex networks for decades after its introduction in the late 1950s. But the
growing interest in complex systems prompted many scientists to ask a simple question:
are real networks behind diverse complex systems fundamentally random? Our intuition
offers a clear answer: complex systems must display some organizing principles which
should be at some level encoded in their topology as well. But if the topology of these
networks indeed deviates from a random graph, we need to develop tools and measures
to capture in quantitative terms their underlying organizing principles.

Scale-Free Networks

Not all nodes in a network have the same number of edges. The spread in the
number of edges of the diverse nodes, or a node’s degree, is characterized by the degree
distributionP(k) which gives the probability that a randomly selected node has exactly
k edges. Since in a random graph the edges are placed at random, the majority of nodes
have approximately the same degree, close to the average degree〈k〉 of the network.
Indeed, the degrees in a random graph follow a Poisson distribution with a peak at〈k〉.

A highly nontrivial development in our understanding of complex networks was the
discovery that for most large networks, including the World-Wide Web [11], Internet
[23], metabolic and protein networks [7, 8], language [17, 18, 19, 20] or sexual [24]
networks, the degree distribution follows a power-law

P(k) ∼ k−γ . (1)

Networks with a power-law degree distribution are called scale-free [25]. A non-
comprehensive list of scale-free networks reported so far is shown in Table 1.

There are major topological differences between random and scale-free networks (Fig.
1). For the former most nodes have approximately the same number of links,k ≈ 〈k〉,
the exponential decay ofP(k) guaranteeing the absence of nodes with significantly more
links than〈k〉. In contrast, the power-law distribution implies that nodes with only a few
links are numerous, but a few nodes have a very large number of links.
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FIGURE 1. (a) The Erd̋os-Rényi random network model is constructed by laying downN nodes and
connecting each pair of nodes with probabilityp. The figure shows a particular realization of such a
network forN = 10 andp = 0.2. (b) The scale-free model assumes that the network continually grows
by the addition of a new nodes. The figure shows the network at timet (black nodes and links) and after
the addition of a new node at timet + 1 (red). The probability that the new node chooses a node withk
links follows (2), favoring highly connected nodes, a phenomenon called preferential attachment.(c) For
the random graph generated by the Erdős-Rényi model the degree distribution,P(k), is strongly peaked
atk =< k > and decays exponentially for largek. (d) P(k) for a scale-free network does not have a peak,
and decays as a power-law,P(k) ∼ k−γ . (e) The random network generated by the Erdős-Rényi model
is rather homogeneous, i.e. most nodes have approximately the same number of links.(f) In contrast, a
scale-free network is extremely inhomogeneous: while the majority of the nodes have one or two links,
a few nodes have a large number of links, guaranteeing that the system is fully connected. To show this,
we colored with red the five nodes with the highest number of links, and with green their first neighbors.
While in the exonential network only 27% of the nodes are reached by the five most connected nodes, in
the scale-free network more than 60% are, demonstrating the key role hubs play in the scale-free network.
Note that both networks contain the same number of nodes and links, 130 and 430, respectively. After
[26].

Scale-Free Model

Two mechanisms, absent from the classical random network models [25, 30], are
responsible for the emergence of the power-law degree distribution . First, most networks
grow through the addition of new nodes, that link to nodes already present in the
system. Indeed, for example, the WWW or the scientific literature, two prototype scale-
free networks, continuously expand by the addition of new nodes. Second, in most
real networks there is a higher probability to link to a node with a large number of
connections, a property calledpreferential attachment. Indeed, we link with higher
probability to a more connected document on the WWW, or we tend to cite repeatedly
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TABLE 1. The scaling exponents characterizing the degree distribution of several scale-
free networks, for whichP(k) follows a power-law (1). We indicate the size of the network
and its average degree〈k〉. For directed networks we list separately the indegree (γ in) and
outdegree (γout ) exponents, while for the undirected networks, marked with a star, these values
are identical. Expanded after Ref. [1].

Network Size 〈k〉 γout γin Reference

WWW 325,729 4.51 2.45 2.1 [11]

WWW 4×107 7 2.38 2.1 [27]

WWW 2×108 7.5 2.72 2.1 [14]

WWW, site 260,000 1.94 [28]

Internet, domain∗ 3,015 - 4,389 3.42 - 3.76 2.1 - 2.2 2.1 - 2.2 [23]

Internet, router∗ 3,888 2.57 2.48 2.48 [23]

Internet, router∗ 150,000 2.66 2.4 2.4 [29]

Movie actors∗ 212,250 28.78 2.3 2.3 [30]

Coauthors, SPIRES∗ 56,627 173 1.2 1.2 [31]

Coauthors, neuro.∗ 209,293 11.54 2.1 2.1 [32]

Coauthors, math∗ 70,975 3.9 2.5 2.5 [32]

Sexual contacts∗ 2810 3.4 3.4 [24]

Metabolic, E. coli 778 7.4 2.2 2.2 [7]

Protein, S. cerev.∗ 1870 2.39 2.4 2.4 [8]

Ythan estuary∗ 134 8.7 1.05 1.05 [33]

Silwood park∗ 154 4.75 1.13 1.13 [33]

Citation 783,339 8.57 3 [15]

Phone-call 53×106 3.16 2.1 2.1 [34]

Words, conccurence∗ 460,902 70.13 2.7 2.7 [20]

Words, synonyms∗ 22,311 13.48 2.8 2.8 [19]

Protein, S. Cerev* 9,85 1.83 2.5 2.5 [35]

Comic Book Characters 6,486 14.9 0.66 3.12 [36]

E-mail 59,912 2.88 2.03 1.49 [37]

Protein Domains* 876 9.32 1.6 1.6 [38]

Prot. Dom. (PromDom)* 5995 2.33 2.5 2.5 [39]

Prot. Dom. (Pform)* 2478 1.12 1.7 1.7 [39]

Prot. Dom. (Prosite)* 13.60 0.77 1.7 1.7 [39]

much cited papers. These two ingredients, growth and preferential attachment, inspired
the scale-free model that leads to a network with a power-law degree distribution. The
algorithm of the scale-free model is the following [25, 30]:

(1) Growth: Starting with a small number (m0) of nodes, at every timestep we add
a new node withm(≤ m0) edges that link the new node tom different nodes already
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present in the system.
(2) Preferential attachment: When choosing the nodes to which the new node con-

nects, we assume that the probabilityΠ that a new node will be connected to nodei
depends on the degreeki of nodei, such that

Π(ki) =
ki

∑ j k j
. (2)

Numerical simulations indicate that this network evolves into a scale-invariant state
with the probability that a node hask edges follows a power-law with an exponentγ = 3
(Fig. 2). The scaling exponent is independent ofm, the only parameter in the model.
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FIGURE 2. (a) Degree distribution of the scale-free model, withN = m 0+t = 300,000 andm0 = m = 1
(circles),m0 = m = 3 (squares),m0 = m = 5 (diamonds) andm0 = m = 7 (triangles). The slope of the
dashed line isγ = 2.9, providing the best fit to the data. The inset shows the rescaled distributionP(k)/2m 2

for the same values ofm, the slope of the dashed line beingγ = 3. (b) P(k) for m 0 = m = 5 and system
sizesN = 100,000 (circles),N = 150,000 (squares) andN = 200,000 (diamonds). The inset shows the
time-evolution for the degree of two vertices, added to the system att 1 = 5 andt2 = 95. Herem0 = m = 5,
and the dashed line has slope 0.5, as predicted by Eq.(5). After [30].

The dynamical properties of the scale-free model can be addressed using various
analytic approaches. The continuum theory proposed in [25, 30] focuses on the dynamics
of node degrees. Widely used are the master equation approach of Dorogovtsev, Mendes
and Samukhin [40] and the rate equation approach introduced by Krapivsky, Redner and
Leyvraz [41]. Here we will focus on the continuum theory; for a discussion of the other
methods see [1, 2].

Continuum theory: The continuum approach calculates the time dependence of the
degreeki of a given nodei. This degree will increase every time a new node enters the
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system and links to nodei, the probability of this process beingΠ(ki). Assuming that
ki is a continuous real variable, the rate at whichki changes is proportional toΠ(ki).
Consequently,ki satisfies the dynamical equation

∂ki

∂ t
= mΠ(ki) = m

ki

∑N−1
j=1 k j

. (3)

The sum in the denominator goes over all nodes in the system except the newly intro-
duced one, thus its value is∑ j k j = 2mt −m, leading to

∂ki

∂ t
=

ki

2t
. (4)

The solution of this equation, with the initial condition that each nodei at its introduction
haski(ti) = m, is

ki(t) = m

(
t
ti

)β
, with β =

1
2
. (5)

Equation (5) indicates that the degree of all nodes evolves the same way, following a
power-law, the only difference being the intercept of the power- law.

Using (5), the probability that a node has a degreeki(t) smaller thank, P(ki(t) < k),
can be written as

P(ki(t) < k) = P

(
ti >

m1/β t

k1/β

)
. (6)

Assuming that we add the nodes at equal time intervals to the network, theti values have
a constant probability density

P(ti) =
1

m0+ ti
. (7)

Substituting this into Eq. (6) we obtain that

P

(
ti >

m1/β t

k1/β

)
= 1− m1/β t

k1/β (t +m0)
. (8)

The degree distributionP(k) can be obtained using

P(k) =
∂P(ki(t) < k)

∂k
=

2m1/β t
m0+ t

1

k1/β+1
, (9)

predicting that asymptotically (t → ∞)

P(k) ∼ 2m1/β k−γ , with γ =
1
β

+1 = 3. (10)

The scale-free and related models [25, 30, 40, 41, 42, 43, 44, 45] view networks as
dynamical systems, assuming that they self-assemble and evolve in time through the
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addition and removal of nodes and links. Such dynamical modeling attempts to capture
what nature did when it assembled these networks, expecting that the structural elements
and the topology will follow from these. Local decisions about the addition or removal
of a link do not aim at global optimization, but try to gain some local advantage to a node
such as, for example, enhancing the visibility of a webpage or the content of a scientific
paper. The incompleteness of the information available to the local decision maker about
the state of the full network, as well as the different interest driving the individual nodes,
are the origin of the stochastic component in network evolution.

The scale-free model is the simplest example of an evolving network. In many
systems, due to aging and saturation effects that limit the number of links a node
can acquire, the preferential attachment function,Π(ki), can be nonlinear, following
Π(ki) = f (ki)∑ j f (k j), where f (k) is an arbitrary function. Nonlinearities inf (k) can
result in deviations from the power-law inP(k) [41]. Similarly, the addition and re-
moval of nodes and links can be incorporated by including appropriate terms inΠ(ki)
[44, 45] changing the exponentγ or the power-law character ofP(k). Thus, in contrast
with critical phenomena [46], the universal feature of most networks is not reflected
by the power-law form ofP(k), or the value of the exponentγ. Most complex systems
share, however, their dynamical, evolutionary character, captured within the framework
provided by evolving networks, indicating that their topology and evolution cannot be
divorced from each other.

HIERARCHICAL ORGANIZATION IN COMPLEX NETWORKS

In addition of being scale-free, measurements indicate that most networks display a
high degree of clustering. Defining the clustering coefficient for nodei with ki links
asCi = 2ni/ki(ki − 1), whereni is the number of links between theki neighbors ofi,
empirical results indicate thatCi averaged over all nodes is significantly higher for most
real networks than for a random network of similar size [47, 1, 2]. Furthermore, the
clustering coefficient of real networks is to a high degree independent of the number of
nodes in the network (see Fig. 9 in [1]).

The scale-free property and clustering are not exclusive: for a large number of real
networks, including metabolic networks [7, 48], the protein interaction network [8, 35],
the world wide web [11] and even some social networks [49, 31, 32] the scale-free topol-
ogy and high clustering coexist. Yet, most models proposed to describe the topology of
complex networks have difficulty capturing simultaneously these two features. For ex-
ample, the random network model [22, 21] cannot account neither for the scale-free, nor
for the clustered nature of real networks, as it predicts an exponential degree distribu-
tion, and the average clustering coefficient,C(N), decreases asN−1 with the number of
nodes in the network. Scale-free networks, capturing the power law degree distribution,
predict a much larger clustering coefficient than a random network. Indeed, numerical
simulations indicate that for one of the simplest models [25, 30] the average cluster-
ing coefficient depends on the system size asC(N) ∼ N−0.75 [1, 2], significantly larger
for largeN than the random network predictionC(N) ∼ N−1. Yet, this prediction still
disagrees with the finding that for several real systemsC is independent ofN [1].
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In order to bring modularity, the high degree of clustering and the scale-free topology
under a single roof, we need to assume that modules combine into each other in a
hierarchical manner, generating what we call ahierarchical network. The presence of
a hierarchy and the scale-free property impose strict restrictions on the number and
the degree of cohesiveness of the different groups present in a network, which can be
captured in a quantitative manner using a scaling law, describing the dependence of the
clustering coefficient on the node degree.

Hierarchical Network Model

We start by constructing a hierarchical network model, that combines the scale-
free property with a high degree of clustering. Our starting point is a small cluster of
five densely linked nodes (Fig.3a). Next we generate four replicas of this hypothetical
module and connect the four external nodes of the replicated clusters to the central node
of the old cluster, obtaining a large 25-node module (Fig.3b). Subsequently, we again
generate four replicas of this 25-node module, and connect the 16 peripheral nodes to the
central node of the old module (Fig.3c), obtaining a new module of 125 nodes. These
replication and connection steps can be repeated indefinitely, in each step increasing the
number of nodes in the system by a factor five.

(a) n=0, N=5

(b) n=1, N=25
(c) n=2, N=125

FIGURE 3. The iterative construction leading to a hierarchical network. Starting from a fully connected
cluster of five nodes shown in(a) (note that the diagonal nodes are also connected – links not visible),
we create four identical replicas, connecting the peripheral nodes of each cluster to the central node of
the original cluster, obtaining a network ofN = 25 nodes(b). In the next step we create four replicas of
the obtained cluster, and connect the peripheral nodes again, as shown in(c), to the central node of the
original module, obtaining aN = 125 node network. This process can be continued indefinitely. After
[50].
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Precursors to the model described in Fig.3 have been proposed in Ref. [51] and
discussed in Ref. [52, 53] as a method of generating deterministic scale-free networks. In
the following we argue that such hierarchical construction generates an architecture that
is significantly different from the networks generated by traditional scale-free models.

First we note that the hierarchical network model seamlessly integrates a scale-
free topology with an inherent modular structure. Indeed, the generated network has a
power law degree distribution with degree exponentγ = 1+ ln5/ ln4 = 2.161 (Fig.4a).
Furthermore, numerical simulations indicate that the clustering coefficient,C � 0.743, is
independent of the size of the network (Fig.4c). Therefore, the high degree of clustering
and the scale-free property are simultaneously present in this network.

The most important feature of the network model of Fig.3, not shared by either the
scale-free [25, 30] or random network models [22, 21], is its hierarchical architecture.
The network is made of numerous small, highly integrated five node modules (Fig.3a),
which are assembled into larger 25-node modules (Fig.3b). These 25-node modules are
less integrated but each of them is clearly separated from the other 25-node modules
when we combine them into the even larger 125-node modules (Fig.3c). These 125-
node modules are even less cohesive, but again will appear separable from their replicas
if the network expands further.

This intrinsic hierarchy can be characterized in a quantitative manner using the re-
cent finding of Dorogovtsev, Goltsev and Mendes [52] that in deterministic scale-free
networks the clustering coefficient of a node withk links follows the scaling law

C(k) ∼ k−1. (11)

This scaling law quantifies the coexistence of a hierarchy of nodes with different
degrees of clustering, and applies to the model of Fig.3a-c as well. Indeed, the nodes at
the center of the numerous 5-node modules have a clustering coefficientC = 1. Those at
the center of a 25-node module havek = 20 andC = 3/19, while those at the center of the
125-node modules havek = 84 andC = 3/83, indicating that the higher a node’s degree
the smaller is its clustering coefficient, asymptotically following the 1/k law (Fig.4b).
In contrast, for the scale-free model proposed in Ref. [25] the clustering coefficient is
independent ofk, i.e. the scaling law (11) does not apply (Fig.4b). The same is true for
the random [22, 21] or the various small world models [47, 54], for which the clustering
coefficient is independent of the nodes’ degree.

Therefore, the discrete model of Fig.3 combines within a single framework the two
key properties of real networks: their scale-free topology and high modularity, which
results in a system-size independent clustering coefficient. Yet, the hierarchical modu-
larity of the model results in the scaling law (11), which is not shared by the traditional
network models.

Hierarchical Organization in Real Networks

To investigate if such hierarchical organization is present in real networks we mea-
sured theC(k) function for several networks for which large topological maps are avail-
able. Next we discuss each of these systems separately.
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FIGURE 4. Scaling properties of the hierarchical model shown in Fig.3 (N = 57). (a) The numerically
determined degree distribution. The assymptotic scaling, with slopeγ = 1+ ln5/ ln4, is shown as a dashed
line. (b) TheC(k) curve for the model, demonstrating that it follows Eq. (11). The open circles showC(k)
for a scale-free model [25] of the same size, illustrating that it does not have a hierarchical architecture.(c)
The dependence of the clustering coefficient,C, on the size of the networkN. While for the hierarchical
modelC is independent ofN (diamond), for the scale-free modelC(N) decreases rapidly (circle). After
[50].

Actor Network: Starting from thewww.IMDB.com database, we connect any two
actors in Hollywood if they acted in the same movie, obtaining a network of 392,340
nodes and 15,345,957 links. Earlier studies indicate that this network is scale-free with
an exponential cutoff inP(k) for high k [25, 44, 43]. As Fig.5a indicates, we find that
C(k) scales ask−1, indicating that the network has a hierarchical topology.

Language network: Recently a series of empirical results have shown that the lan-
guage, viewed as a network of words, has a scale-free topology [20, 19, 17, 18]. Here we
study the network generated connecting two words to each other if they appear as syn-
onyms in the Merriam Webster dictionary [19]. The obtained semantic web has 182,853
nodes and 317,658 links and it is scale-free with degree exponentγ = 3.25. TheC(k)
curve for this language network is shown in Fig.5b, indicating that it follows (11), sug-
gesting that the language has a hierarchical organization.

World Wide Web: On the WWW two documents are connected to each other if there is
an URL pointing from one document to the other one. The sample we study, obtained by
mapping out thewww.nd.edu domain [11], has 325,729 nodes and 1,497,135 links,
and it is scale-free with degree exponentsγout = 2.45 andγin = 2.1, characterising the
out and in-degree distribution, respectively. While the obtainedC(k), shown in Fig.5c,
does not follow as closely the scaling law (11) as observed in the previous two examples,
there is clear evidence thatC(k) decreases rapidly withk, supporting the coexistence of
many highly interconnected small nodes with a few larger nodes, which have a much
lower clustering coefficient. Note thatC(k) ∼ k−1 for the WWW was observed and
briefly noted in Ref. [55].

Internet at the AS level: The Internet is often studied at two different levels of
resolution. At the router level we have a network of routers connected by various
physical communication links. At the interdomain or autonomous system (AS) level
each administrative domain, composed of potentially hundreds of routers, is represented
by a single node. As Fig.5d shows, we find that at the domain level the Internet,
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FIGURE 5. The scaling ofC(k) with k for four large networks:(a) Actor network, two actors being
connected if they acted in the same movie according to thewww.IMDB.com database.(b) The semantic
web, connecting two English words if they are listed as synonyms in the Merriam Webster dictionary [19].
(c) The World Wide Web, based on the data collected in Ref. [11].(d) Internet at the Autonomous System
level, each node representing a domain, connected if there is a communication link between them.(e)
The metabolic networks of 43 organisms with their averagedC(k) curves.(f) The protein-protein physical
interaction networks using four different databases [56, 57, 58, 59]. The dashed line in each figure has
slope−1, following Eq. (11). After [50, 60, 61].

consisting of 65,520 nodes and 24,412 links [62], has a hierarchical topology asC(k)
is well approximated with (11). The scaling of the clustering coefficient withk for the
Internet was earlier noted by Vazquez, Pastor-Satorras and Vespignani (VPSV) [63, 64],
who observedC(k) ∼ k−0.75.

Metabolic networks: We measured theC(k) function for the metabolic networks of
43 organisms [60]. As shown in Fig. 5e, for each organismC(k) is well approximated
by C(k) ∼ k−1.

Protein Interaction Network: To address the organization of protein interactions we
studied the protein interaction network ofS. cerevisae, based on four independent
databases [56, 57, 58, 59]. The result, shown in Fig. 5, indicate that for each database
the obtained network is heirarchical,C(k) scaling ask−1 [61].

Our measurements indicate that some real networks lack a hierarchical architecture,
and do not obey the scaling law (11). In particular, we find that the power grid and the
router level Internet topology have ak independentC(k) [65].

In summary, we offered evidence that for several large networksC(k) is well ap-
proximated byC(k) ∼ k−1, in contrast to thek-independentC(k) predicted by both the
scale-free and random networks. This indicates that these networks have an inherently
hierarchical organization. In contrast, hierarchy is absent in networks with strong geo-
graphical constraints, possibly because the limitation on the link length strongly con-
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straints the network topology.

HALTING VIRUSES IN SCALE-FREE NETWORKS

After discussing the topological features of complex networks, we now turn to an appli-
cation of these ideas to network dynamics, looking at the possibility of stopping virus
spreading on scale-free networks. Classical epidemiological models predict that infec-
tious diseases with transmission probability under an epidemic threshold will inevitably
die out [66, 67]. Thus, short of a universally available cure, lowering the transmission
probability represents an effective action against pandemics. Two recent results funda-
mentally revise this paradigm, however. First, Pastor-Satorras and Vespigniani [68] have
shown that in scale-free networks the epidemic threshold is reduced to zero, that is, even
extremely weakly infectious viruses spread and prevail. Second, Liljeroset al. [24] have
found that the network of human sexual contacts has a scale-free topology. Taken to-
gether, these results indicate that reducing the transmission probability cannot eradicate
sexually transmitted infectious diseases. That is, given the inhomogeneous, scale-free
topology of the sexual web, short of a cure or vaccine available to all, the HIV virus will
eventually reach the so far uninfected segments of the population exposed to the disease.
The continued spreading of the HIV virus is remarkable because relatively effective ther-
apies are available, that not only expand the lifetime of the infected individual, but also
lower the transmission probability. The problem is that these expensive therapies are be-
yond reach in developing countries [69]. Given the limited number of cures available,
can we use our improved understanding of the interplay between network topology and
disease spreading to design allocation policies that restore the epidemic threshold, offer-
ing hope that the pandemic can be constrained?

Epidemics spread without a threshold on a scale-free network thanks to hubs. Once
infected, hubs offer an efficient conduit for disease spreading by reaching an unusually
high percentage of other nodes [68]. Random immunization cannot restore the epidemic
threshold, as it leaves the scale-free nature of the network unaltered. However, one can
show that immunizing all hubs with degree larger than a given connectivityk0 restores
the finite epidemic threshold. Indeed, the origin of the zero threshold is the infinite
variance [70] of the power law distribution 1. If nodes withk > k0 links do not transmit
the disease, the variance is finite, which results in a finite epidemic threshold [71]. This
indicates that the most effective response to an epidemic must focus all resources on
reaching as many hubs as economically feasible. This would also be the most cost-
effective, as hubs are relatively rare in scale-free networks. The problem with this
optimal policy is that we cannot effectively identify the hubs, because the number of
sexual partners for individuals is unknown. Here we study a model that incorporates
our limited ability to identify the hubs, assuming that the likelihood of providing cure
to a node withk sexual partners in a given time frame increases askα . In this model
α = 0 corresponds to random immunization, which is expected to have zero epidemic
threshold, whileα = ∞ corresponds to the optimal policy that treats all hubs with degree
larger thank0. Thus any finiteα describes a policy which focuses its resources to treat at
a higher rate the more connected members of the sexual web. To study the effect of such
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a selective policy we use the susceptible-infected-susceptible (SIS) model, which offers
a simple phenomenological description of epidemic spreading in a complex network
[68]. We assume that the disease spreads on a scale-free network with degree exponent
[25] γ = 3 within the range of the experimentally identified values for the sexual web [24]
. Each node is infected at a rateν if it has a link to an infected node and infected nodes
are cured and become susceptible again to the disease with a probabilityδ = δ0kα ,
defining the effective spreading rate asλ ≡ ν

δ0
. The analytical calculations, supported

by numerical simulations, indicate that the epidemic threshold varies asλc = αm(α−1)

(Fig. 6). Thus forα = 0 we recoverλc = 0 confirming that random immunization cannot
eradicate sexually transmitted infectious diseases. The good news is that for any nonzero
α we obtain thatλc 
= 0, indicating that policies that attempt to identify and preferentially
treat the hubs restore the epidemic threshold. The fact that the threshold is restored for
any α > 0 value indicates that even modestly effective attempts to uncover and treat
hubs, characterized by smallα, if carried out systematically, are more successful than
policies based on large-scale but random distribution of the available treatments.
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FIGURE 6. Curing the hubs. (a) Prevalence,ρ , measured as the fraction of infected nodes in function
of the effective spreading rateλ for α = 0 (circle), 0.25 (square), 0.50 (triangle down), 0.75 (diamond)
and 1 (triangle up), as predicted by Monte-Carlo simulations using the SIS model on a scale-free [25]
network with N=10,000 nodes. While forα = 0 the epidemic threshold is zero, a nonzeroα leads to
the emergence of a finite epidemic threshold.(b) The dependence of the epidemic thresholdλ c on α as
predicted by our calculations (continuous line) based on the continuum approach described in Ref. [68],
and by the numerical simulations based on the SIS model (green boxes). The small deviation between the
numerical results and the analytical prediction is due to the uncertainty in determining the precise value
of the threshold in Monte-Carlo simulations. The vertical axis on the r.h.s. labels the number of cures,c,
administered in an unit time per node for different values ofα, shown as black circles on the figure. The
rapidly decayingc indicates that more successful is a policy in selecting and curing hubs (larger isα),
fewer cures are required for a fixed spreading rate (λ = 0.75). The data points in (a) and (b) are averaged
over 10 independent runs. After [72].

Such selective cures are particularly important when successful therapies are limited
by the absence of financial resources. Our results indicate that under such conditions it
is most desirable to make the best efforts to uncover and cure individuals with a high
number of sexual partners, whose reduced ability to spread the disease will drastically
lower the disease rate within the whole population. Indeed, we find that within the model
the number of administered cures decreases rapidly asα increases (Fig.1b), indicating
that treating the hubs is also the financially most responsible policy. Note that similar
conclusions have been reached by several independent studies [73].
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OUTLOOK

The fact that many large networks are scale-free is now well established. It is also clear
that most networks have a modular topology, quantified by the high clustering coefficient
they display. Such modules have been proposed to be a fundamental feature of biological
systems [4, 60], but have been discussed in the context of the WWW [12, 74], and social
networks as well [75, 76]. The hierarchical topology offers a new avenue for bringing
under a single roof these two concepts, giving a precise and quantitative meaning for
the network’s modularity. It indicates that we should not think of modularity as the
coexistence of relatively independent groups of nodes. Instead, we have many small
clusters, that are densely interconnected. These combine to form larger, but less cohesive
groups, which combine again to form even larger and even less interconnected clusters.
This self-similar nesting of different groups or modules into each other forces a strict
fine structure on real networks.

The presence of such a hierarchical architecture reinterprets the role of the hubs in
complex networks. Hubs, the highly connected nodes at the tail of the power law degree
distribution, are known to play a key role in keeping complex networks together, playing
a crucial role from the robustness of the network [77, 78] to the spread of viruses
in scale-free networks [68]. Our measurements indicate that the clustering coefficient
characterizing the hubs decreases linearly with the degree. This implies that while the
small nodes are part of highly cohesive, densely interlinked clusters, the hubs are not,
as their neighbors have a small chance of linking to each other. Therefore, the hubs play
the important role of bridging the many small communities of clusters into a single,
integrated network.

While it is difficult to identify such universal characteristics from single examples,
once they are uncovered, they offer strong support for an emerging theme: networks
in nature are far from being random, but they evolve following robust self-organizing
principles and evolutionary laws that cross disciplinary boundaries. Progress is possi-
ble only if the numerical and analytical work is combined with empirical studies on
real networks, potentially opening an unexpectedly revealing window on the structure
of complex systems. The results reviewed here likely represent only the tip of the ice-
berg, and systematic data driven studies focusing on the topology and evolution of real
networks could fundamentally change how we approach the complex world around us.
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