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Network exploration using true self-avoiding walks
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We study the mean first passage time (MFPT) of true self-avoiding walks (TSAWs) on various networks
as a measure of searching efficiency. From the numerical analysis, we find that the MFPT of TSAWs, τTSAW,
approaches the theoretical minimum τ th/N = 1

2 on synthetic networks whose degree-degree correlations are
positive. On the other hand, for biased random walks (BRWs) we find that the MFPT, τBRW, depends on the
parameter α, which controls the degree-dependent bias. More importantly, we find that the minimum MFPT
of BRWs, τBRW

min , always satisfies the inequality τBRW
min > τTSAW on any synthetic network. The inequality is also

satisfied on various real networks. From these results, we show that the TSAW is one of the most efficient models,
whose efficiency approaches the theoretical limit in network explorations.
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I. INTRODUCTION

Due to its simplicity and theoretical importance, the random
walk (RW) and its variants on a network have been intensively
investigated to uncover various topological properties of
networks as well as the dynamical properties of RWs on
networks themselves [1–9]. They also play an important role
as an efficient tool for sampling or exploring the network
when only the local information is available [10–12]. It has
been shown that the sampling efficiency can be drastically
enhanced if the walks avoid multiple visits of nodes [11,12].

In addition, due to the explosive growth of human activ-
ities through communication networks, finding the efficient
searching algorithm on a network such as the Internet and
mobile communication networks is a very important problem
in practice to send a message to the destination in a short time.
Among the many dynamical processes, RW-based processes
provide very simple, efficient, and widely applicable methods
in information searching and routing on a network when there
is no complete knowledge about the network or when the
topology of the network is frequently changed [13–16]. Like
the network sampling, the suppression of revisitation enhances
the searching efficiency. In the normal RW, the probability of
finding a walker at a node of degree k is proportional to k [4].
This increases revisitations of high-degree nodes and decreases
the searching efficiency. To suppress such revisitation of
high-degree nodes, biased random walk (BRW) models were
suggested as alternative strategies for information search on a
network with only local information [14,16].

In this sense, the self-avoiding walk (SAW) [17] is more
efficient than the RW and BRW for exploring the network
because it avoids the nodes already visited in a more stringent
way. Even though SAWs are more efficient than RWs and
BRWs, there is an intrinsic disadvantage in simply applying
SAWs to information search on a network, because in SAWs
the walker can be trapped if all the connected neighbors have
already been visited. The typical length scale of SAWs for
trapping is characterized by the attrition length. The average
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attrition length, 〈L〉, of SAWs on complex networks with N

nodes is known to scale as 〈L〉 ∼ Nδ with δ < 1 [18,19].
Recently, a modified SAW model in which SAWs are

combined with normal RWs was introduced for direct applica-
tion to the searching problem on a network [20]. However,
if we coarse-grain the network with a typical length 〈L〉,
then each node in the coarse-grained network corresponds
to a subnetwork composed of 〈L〉 ∼ Nδ nodes. Due to the
sublinear scaling of 〈L〉 the coarse-grained network is also
infinite when N → ∞, and the walker takes RW to move
one node to the other on the coarse-grained network. Thus,
the enhancement in the searching efficiency of the modified
SAWs originates mainly from the finite-size effect.

In this paper, we use the true SAWs (TSAWs) [17,21]
as the strategy for information search on complex networks
to truly suppress the revisitation of nodes and compare the
results with those of BRWs. For the quantitative analysis of
the searching efficiency, we measure the mean first-passage
time (MFPT) and show that the MFPT of TSAWs approaches
the theoretical limit. Furthermore, TSAWs are non-Markovian
processes. Thus, the history of walks significantly affects the
searching efficiency. Especially, how many hubs are visited
in the past and how often the walker passes these hubs are
very crucial in exploring a network. Thus finding the effect
of degree-degree correlation is another important quest in
understanding the efficiency of searching strategies.

The paper is organized as follows. In Sec. II, we define the
TSAW and BRW as well as the underlying synthetic networks.
Section III reports the numerical results. The summary and
discussion are provided in Sec. IV.

II. MODEL

A. True self-avoiding walk

The TSAW is defined as a stochastic process in which the
probability that a walker hops to the next node is proportional
to a negative exponential of the number of visitations. TSAWs
on a network with N nodes are implemented as follows.
Initially a node i is randomly selected and a walker is placed
at i. At each time step t , if there are nearest neighbors of
the current position which have not yet been visited, then the
walker hops to a node chosen randomly from the neighbors
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not yet visited. If all neighbors have already been visited, then
we uniformly choose a node among those neighboring nodes
which have been visited least often in the past [17,21].

B. Biased random walk

In BRWs on a network the hopping probability from a node
i to one of the connected nodes j is defined as [22,23]

πij = kα
j∑ki

�=1 kα
�

. (1)

Here kj is the degree of node j and
∑ki

�=1 represents the sum
over the connected neighbors of node i. The exponent α is
the control parameter. α = 0 corresponds to the normal RWs.
α > 0 (< 0) means that the walker prefers to move to the nodes
of a high (low) degree.

C. Synthetic networks and degree-degree correlation

In order to study the effect of the underlying topology
on the searching efficiency, we consider three synthetic
network models: the Erdös-Rényi (ER) model for random
networks [24], the Barabási and Albert (BA) model [25], and
the configuration model (CM) [26]. The degree distribution
P (k) of the ER model is binomial distribution. In the
limit N → ∞, P (k) of the ER model becomes a Poisson
distribution, P (k) = e−〈k〉 〈k〉k

k! , when the network is sparse [24].
Here 〈k〉 is the average degree. The BA model is characterized
by the power-law degree distribution, i.e., P (k) ∼ k−γ with
γ = 3. The network whose degree distribution satisfies the
power law is called a scale-free (SF) network. P (k) of the CM
can be any distribution, but we use P (k) ∼ k−γ to generate a
SF network with various values of γ .

The degree-degree correlation of a network with M edges
is generally measured by the Pearson coefficient [27], defined
as

r = M−1 ∑
i jiki − [

M−1 ∑ 1
2 (ji + ki)

]2

M−1
∑

i
1
2 (j 2

i + k2
i ) − [

M−1
∑

i
1
2 (ji + ki)

]2 , (2)

where ji and ki are the degrees of the nodes at the ends of the ith
edge, with i = 1, . . . ,M . If r > 0 (r < 0), then the network is
said to be assortative (disassortative) and the network is neutral
when r = 0. For the systematic generation of the correlated
networks, we use the edge exchange method [28].

After applying the edge exchange method, we extract only
the largest connected component (LCC) and check P (k), r ,
and the size of the LCC, N . If N , P (k), and r of the LCC
are identical with the preassigned conditions, we use the LCC
as the underlying topology for the simulation. The obtained
networks belong to some peculiar subset of network ensembles
generated by the ER model, BA model, or CM.

III. MEAN FIRST-PASSAGE TIME

Let τij be the time at which the walker starting at node i

visits node j for the first time. Then the MFPT, τ , is defined
as the average of τij over all possible pairs of nodes:

τ ≡ 1

N (N − 1)

∑

i,j

τij . (3)

FIG. 1. (a) Plot of τ vs α for BRWs on SF networks generated
by CM with N = 104, γ = 2.5, r = 0, and 〈k〉 = 47. (b) Plot of
the obtained αmin for various values of r in three types of networks.
〈k〉 = 40 for ER and BA networks and 〈k〉 = 46.5 for the CM with
γ = 2.5. (c) Plot of αmin of BRW vs N for CM with γ = 2.5 and
〈k〉 = 10. (d) τBRW

min and τTSAW vs N on the CM with r = 0.1, γ = 2.5,
and 〈k〉 = 10. Solid and dashed lines in (d) represent the relation
τ ∼ N .

To measure τij we place the walker on a node i at t = 0. At
each time step, the walker takes a walk according to the model
defined in Sec. II until all nodes are visited. If a node j is
visited for the first time at t , then we set τij = t . Repeat the
procedure for all i (=1, 2,. . . ,N). Since the TSAW and BRW
are stochastic processes, τij are averaged over 50 realizations
of the walks for each i. We calculate τ using Eq. (3) for
single-network generation and average τ over 100 different
networks.

As shown in Fig. 1(a), the τ of BRWs depends on α and is a
convex function of α. In fact, for all the considered networks,
the τ of BRWs is always a convex function of α as in Ref. [16]
(which are not shown).

Thus, there is a value αmin at which the τ of BRWs becomes
the minimum τBRW

min . For example, we obtain τBRW
min � 1.08N

(N = 104) at αmin � −0.95 on SF networks generated by the
CM with γ = 2.5 and r = 0 [see Fig. 1(a)]. We obtain αmin

for other values of r and N through the measurement of the
τ of BRW for various values of α as in Fig. 1(a). The results
are shown in Fig. 1(b). The obtained αmin is quite close to
the theoretical expectation αmin = −1 for r = 0 but deviates
significantly from αmin = −1 when r 	= 0, which agrees with
the results in Ref. [16]. This implies that τBRW

min is affected by the
degree-degree correlation because τ depends on α [29]. Thus
the degree-degree correlation is a crucial factor in determining
the searching efficiency. Furthermore, αmin also depends on
N if r 	= 0 [see Fig. 1(c)]. In Fig. 1(d), we display τTSAW and
τBRW

min versus N in the CM with γ = 2.5 and r = 0.1 (>0). The
data in Fig. 1(d) show that the inequality τBRW

min > τTSAW holds
for any N . The same inequality is found for other values of
γ , 〈k〉, and r . Since τBRW − τTSAW becomes much larger than
τBRW

min − τTSAW when α deviates from αmin, to reach the best
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FIG. 2. Plots of τBRW
min /N of BRWs (open symbols) and τTSAW/N

of TSAWs (filled symbols) with (a) 〈k〉 = 40 and (b) 〈k〉 = 10. The
solid line represents τ/N = 1/2, which is the theoretical minimum
with N = 104.

searching efficiency by BRWs, α should be carefully adjusted
to be αmin.

In Fig. 2 the measured τBRW
min /N at αmin and τTSAW/N for

various r’s are displayed. Here τTSAW is the τ of TSAWs. For
〈k〉 = 40, we find that τBRW

min on both BA and CM networks
decreases as r increases and saturates to τBRW

min /N � 1, while
τBRW

min /N � 1 on ER networks regardless of r as shown in
Fig. 2(a). τTSAW also decreases as r increases and saturates
to a constant which is very close to the theoretical minimum
τ th/N = 1

2 . This limit is obtained when all nodes in a network
are visited only once without revisitation. Large values of τBRW

min
and τTSAW for r < 0 can be understood from the following
heuristic arguments. In BRWs on networks, the probability
of finding a walker at a node of degree k is proportional to
k−α+1 [4,29]. Thus, the walker more frequently visits nodes of
large k, regardless of the value of α when r = 0. If r < 0, then
nodes of large k have a strong tendency to be connected with
nodes of small k. As a result, the walker at a node of small k

coming from nodes of large k has a relatively high probability
of moving back to a node of large k for BRWs. This increases
the revisitation probability of nodes of large k and the walker
is more easily trapped in a small part of a network. Similarly,
for TSAWs if the walker arrives at a dead-end through a node
of large k, then the revisitation probability of a large-degree
node increases, which causes a large τTSAW. On the other
hand, if r > 0, then each node tends to be connected with
nodes of a similar degree. This means that the walker at a
node has almost the same probability of moving to one of

its neighboring nodes, regardless of the value of α, which
reduces the revisitation probability of a specific node. Due to
the homogeneous degree distribution in the ER network, r does
not affect the searching efficiency of either BRWs or TSAWs
on ER networks. More importantly, the data clearly show that
τBRW

min > τTSAW for all r . Moreover, the value of τ for TSAWs
approaches the theoretical limit τ th/N = 1

2 as r increases [see
Fig. 2(a)]. This clearly indicates that the TSAW provides the
most optimal performance for exploring the complex network.

For relatively small 〈k〉 (=10), we find that both τBRW
min and

τTSAW increase compared to those for larger 〈k〉 as shown
in Fig. 2(b). This increase in τ ’s is a natural consequence
because the number of possible paths connecting two nodes
decreases as 〈k〉 decreases. In addition, the data in Fig. 2(b)
show that τBRW

min on SF networks is a convex function of r . The
increase in τBRW

min for r � 0.4 might come from the algorithmic
limit of the edge exchange methods [28], which causes some
biased sampling of unnatural topologies when the change of
r from the original network, |�r|, becomes large. However,
we find that the inequality τBRW

min > τTSAW is still valid for any
r , regardless of this numerical artifact. Furthermore, τTSAW

for r > 0 still approaches a theoretical minimum τ th/N = 1
2

and the difference τBRW
min − τTSAW becomes larger than that for

large 〈k〉. We also verify that the inequality τBRW
min > τTSAW

holds for other values of 〈k〉.
We also measure τBRW

min and τTSAW on several real networks.
The results are listed in Table I with additional topological
properties. As reported in Table I, τBRW

min > τTSAW on any net-

works, and the difference between τBRW
min and τTSAW becomes

maximum for the road network in California. One possible
source of this large difference between τBRW

min and τTSAW for
the road network in California might come from the small
value of 〈k〉 (�2.8) as addressed in Fig. 2. The data in Table I
show some tendency for τTSAW to decrease as 〈k〉 increases.
Moreover, τTSAW approaches τ th/N = 1

2 as r and 〈k〉 increase.

IV. SUMMARY AND DISCUSSION

We study the MFPT of TSAWs as a measure of the
searching efficiency on complex networks. From the nu-
merical analysis, we find that the inequality τBRW

min > τTSAW

holds for any underlying topology. Especially, we find
that τTASW approaches the theoretical limit, τ th/N = 1/2,
when 〈k〉 is large enough. For a network with relatively
small 〈k〉 the measured τTSAW is slightly larger than that for
large 〈k〉, but it still remains at a value close to the theoretical

TABLE I. List of measured τBRW
min and τTSAW on real networks.

N 〈k〉 r αmin τBRW
min /N τTSAW/N

www (google) [30] 855802 10.03 −0.06 −0.33 4.11 1.29
Coauthor-AstroPh [31] 17903 22.0 0.20 −0.58 2.15 0.68
Gnutella [32] 62561 4.72 −0.09 −0.55 2.35 0.88
Yeast [33] 2224 5.94 −0.11 −0.46 2.71 0.90
Amazon [34] 410236 11.89 −0.02 −0.58 1.92 0.61
Wordnet [35] 75606 3.18 −0.09 −0.10 3.14 1.71
Road (CA) [30] 1957027 2.8 0.12 0.4 15.15 1.45
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minimum for r > 0. The similar behavior of τTSAW is also
observed on various real networks.

Furthermore, to obtain the best efficiency of BRWs, α

should be very carefully tuned to be α = αmin for each
network because αmin depends on the topological properties
of the underlying network such as r and N . This implies that
αmin should be readjusted if some topological properties of
underlying network are changed. The tuning of α is composed
of the measurement of τBRW for various values of α, which
cannot be accomplished without the exploration of the network
using BRWs. Thus, the tuning of α is practically infeasible or is
not efficient for large real networks. In contrast to BRW, TSAW
does not require any tuning of parameters. These results clearly

show that the TSAW is one of the most efficient and simple
models to explore any complex networks using only the local
information without any tuning of parameters.
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Boston, 1993).

[18] C. P. Herrero, Phys. Rev. E 71, 016103 (2005).
[19] C. P. Herrero, Eur. Phys. J. B 56, 71 (2007).
[20] V. M. L. Millán, V. Cholvi, L. López, and A. F. Anta, Networks
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