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Percolation in spatial evolutionary prisoner’s dilemma game on two-dimensional lattices
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We study the spatial evolutionary prisoner’s dilemma game with updates of imitation max on triangular,
hexagonal, and square lattices. We use the weak prisoner’s dilemma game with a single parameter b. Due to the
competition between the temptation value b and the coordination number z of the base lattice, a greater variety
of percolation properties is expected to occur on the lattice with the larger z. From the numerical analysis, we
find six different regimes on the triangular lattice (z = 6). Regardless of the initial densities of cooperators and
defectors, cooperators always percolate in the steady state in two regimes for small b. In these two regimes,
defectors do not percolate. In two regimes for the intermediate value of b, both cooperators and defectors
undergo percolation transitions. The defector always percolates in two regimes for large b. On the hexagonal
lattice (z = 3), there exist two distinctive regimes. For small b, both the cooperators and the defectors undergo
percolation transitions while only defectors always percolate for large b. On the square lattice (z = 4), there
exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation
transitions belong to the universality class of the random percolation. We also show how the detailed growth
mechanism of cooperator and defector clusters decides each regime.
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I. INTRODUCTION

To understand the origin of the emergence and persistence
of cooperation among selfish individuals, game theories have
been studied extensively over the past few decades [1,2].
Recently, many studies have focused on spatial evolutionary
games to understand how steady-state strategies emerge in
various structures and to identify the characteristic features of
steady-state strategies [2–4].

Among spatial evolutionary games, the spatial evolutionary
prisoner’s dilemma game (SEPDG) has attracted considerable
attention [3,5–21]. In this paper, we consider SEPDG on
two-dimensional lattices, which is defined as follows. Initially,
cooperators (Cs) and defectors (Ds) are randomly distributed
to sites on a lattice. The number NC(t) of C sites and ND(t) of
D sites vary over time t under the condition NC(t) + ND(t) =
N , where N is the total number of sites. In each update, a
site is randomly selected. Then, the accumulated payoffs of
the selected site and z nearest neighbors (NNs) of the site are
calculated.

In the prisoner’s dilemma game, if both players cooperate,
then both get the payoff R (reward). If one cooperates while the
other defects, D gets T (temptation) while C gets S (sucker’s
payoff). If both defect, they each get P (punishment). T , R,
P , and S should obey the conditions T > R > P > S and
2R > T + S. Various versions of the prisoner’s dilemma game
have been suggested and studied, including a game with two
parameters or with (R,T ,S,P ) = (1,1 + Dg, − Dr,0) [5–7].
The prisoner’s dilemma game with a single parameter such as
Dg = Dr = r has also been considered [7,8]. In this paper, the
weak prisoner’s dilemma game with R = 1, T = b(1 < b <

2), and P = S = 0, which was first suggested in Ref. [9], is
used. Therefore, in our SEPDG the accumulated payoff of a
D site is bnC and that of a C site is nC , where nC (nD) is the
number of C (D) NNs of a given site with nC + nD = z.
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Some models for SEPDG [3,7,10–14] have used stochastic
updates in which the strategy of the selected site is changed by
some probability based on a comparison between payoffs. In
this paper, we take the updates of imitation max [6–8,13,14] in
which the selected site takes the strategy of the site that has the
highest accumulated payoff among those of the selected site
and z NNs. The results of SEPDG with the stochastic updates
could be different from those with the updates of imitation
max.

It has been known that the formation of cooperator clusters
(C clusters) plays an important role in promoting cooperation
in SEPDGs [10–12]. Therefore, it is very important to study
connectivity or percolation properties of Cs and Ds as well as
densities to understand the emergence of cooperation among
selfish individuals. For the connectivity, some of the previous
studies have shown that the final density of Cs depends
on the initial density [7,8] and spatial structures [8,11,12].
Previous investigations have also focused on the structural
properties and pattern formations of C clusters [9–12,15].
In particular, special patterns of C clusters and D clusters,
such as evolutionary kaleidoscopes, have been found in
SEPDG with synchronized updates [9,15] as a kind of cellular
automata [22]. Furthermore, network reciprocity, which can
be decomposed into two periods (END and EXP, as long
as one starting archetype is the initial cooperation density),
has been found [7,8,13,14]. The reciprocity may elucidate
what determines the final cooperation density among initial
cooperation density, domain size, or others.

The theory of percolation describing large-scale connec-
tivity on lattices has now been well established to a deeper
level [23]. Therefore, if cluster formation is important, the
percolation properties of clusters must be studied quanti-
tatively from the perspective of modern percolation theory.
Several percolation-related studies of SEPDG with stochastic
updates have been done. In Refs. [16,17], it was shown that
a population density close to the percolation threshold is
optimal for the successful evolution of cooperation. Another
study [18] investigated some percolation properties of an
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off-lattice SEPDG. On the other hand, the percolation prop-
erties in SEPDG with updates of imitation max have hardly
been studied except for Ref. [19]. In Ref. [19], the following
percolation properties of steady-state C clusters in SEPDG
with updates of imitation max on a square lattice were
obtained only by numerical simulations without any theoretical
explanation: For 1 < b < 4/3, C clusters were shown to
undergo the percolation transition with the universality class of
random (ordinary) percolation. For 4/3 < b < 3/2, C clusters
were shown to be finite regardless of the initial density of
Cs. For 3/2 < b < 2, C clusters were argued to undergo the
percolation transition with the universality class of invasion
percolation with trapping [24] via a comparison between
critical exponents β/ν and γ /ν of the transition and the
calculated β/ν from the fractal dimension df of the cluster [24]
of the invasion percolation by a brute force application
of the formula df = d − β/ν [23] without any theoretical
background. Furthermore, invasion percolation does not have
the phase transition, and thus the critical exponents β, ν,
and γ cannot be defined. Physically, one should be careful
to establish the universality class numerically when there is no
theoretical or analytical basis. However, Ref. [19] paid little
attention to such theoretical grounds for numerical results.

In this sense, we study the percolation properties of both
Cs and Ds in SEPDG with the updates of imitation max
by using finite-size scaling (FSS) analyses [23] from the
following theoretical perspectives. Cs should form compact
clusters for survival. For growth or expansion, Cs should have
a sufficient number of C NNs. In contrast, Ds should have
enough C NNs or penetrate into C clusters for survival and
growth. These theoretical perspectives are supported by the
well-known mean-field behavior in which increasing z brings
about the extinction of Cs [2,3]. Furthermore, it has been
shown that the topological properties of the lattice affect the
spreading and maintenance of cooperation [20,21]. Hence, the
percolation properties should be decided by the competition
between b and the coordination number z of the base
lattice.

To illustrate the validity of this perspective or to confirm
that on the lattice with larger z there is a greater variety
of regimes (cluster structures) in the steady state, we study
the connectivity or the percolation properties of SEPDG
with the updates of imitation max on triangular, hexagonal
(honeycomb), and square lattices. Our analyses focus not
only on the percolation properties of the steady-state clusters
but also on theoretical explanations of the properties through
growing mechanism of clusters. Due to the interdependence
of Cs and Ds in SEPDG, we focus on the connectivity or the
percolation property of defector clusters (D clusters) as well
as C clusters in the steady state.

We find the following important results. On the triangular
lattice (z = 6), there exist six regimes: two C-dominant
regimes for low b, two regimes of percolation transitions
for mid b, and two D-dominant regimes for high b. On the
hexagonal lattice (z = 3), there exist only two regimes, namely
a regime of percolation transition for low b and a D-dominant
regime for high b. As in Ref. [19], we find three regimes on the
square lattice. Furthermore, the universality of any percolation
transition on any lattice is clearly shown to belong to that of
the random percolation.

II. PERCOLATION PROPERTIES

We performed a simulation to investigate the property of
C clusters and D clusters [23] in the steady state depending
on the parameter b. The steady state in a given simulation run
means the state in which NC (D)(t) hardly varies against t . As
we shall see, most steady states are absorbing states in which
the spatial distribution of strategies is frozen or quenched [3].
We also find that a local strategy reversal process occurs in
several steady states for 3/2 < b < 5/3 (the fifth regime) and
5/3 < b < 2 (the sixth regime) on the triangular lattice, for
4/3 < b < 3/2 (the second regime) on the square lattice, and
for 3/2 < b < 2 (the second regime) on the hexagonal lattice.
However, this reversal process rarely affects the macroscopic
properties.

To study the percolation transition of C and D clusters,
we first measure the final densities, p

C (D)
f , the fractions of the

largest clusters, P
C (D)
LC , and the susceptibility, χC (D), against

the initial densities p
C (D)
i . These quantities are defined as

follows [23,25]:

pC
i = NC(t = 0)

N
, pD

i = ND(t = 0)

N
, (1)

pC
f = 〈NC(t → ∞)〉

N
, pD

f = 〈ND(t → ∞)〉
N

, (2)

P C
LC =

〈
NC

LC

〉

N
, P D

LC =
〈
ND

LC

〉

N
, (3)

χC = N
[〈
P C2

LC

〉 − 〈
P C

LC

〉2]
, χD = N

[〈
P D2

LC

〉 − 〈
P D

LC

〉2]
, (4)

where N
C (D)
LC is the number of sites of the largest C (D)

cluster, and 〈· · · 〉 stands for the average over steady-state
configurations. All quantities are obtained by averaging over
more than 104 simulation runs. Since our model uses the
updates of imitation max, the percolation properties should
be identical in a given interval of b for a specific regime on
any lattice.

A. Strategy decision

Before presenting the simulation results, we want to
explain the theoretical basis for how the different regimes
for connectivity or percolation properties occur on different
lattices. The theoretical basis is the strategy decision process in
a typical update of imitation max. In each update, the strategy
of the selected site is decided by the highest accumulated
payoff among those of the z + 1 sites, i.e., the selected site
and its z NNs. Thus, the strategy of the site is decided by
the comparison between the highest payoff P C

h of C sites
and the highest payoff P D

h of D sites among the z + 1 sites.
The selected site will take C if P C

h > P D
h . Otherwise, the

site will take D. Possible values of P C
h and P D

h depend on
z. On the hexagonal lattice with z = 3, the set of possible
values of P C

h (P C
h set) is {0,1,2,3} and that of P D

h (P D
h set)

is {0,b,2b,3b}. When P D
h = 0, any site that is involved in

calculating the payoffs of the z + 1 sites cannot be a C site on
the hexagonal lattice. Thus, we do not have to compare P D

h = 0
to any element in P C

h . The other 12 comparisons shown in
Fig. 1(a) can occur at the selected sites of the hexagonal lattice.
Except for the comparison between P C

h = 3 and P D
h = 2b, the
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FIG. 1. The strategy-decision tables for the comparisons between
P C

h and P D
h (a) on the hexagonal lattice (z = 3) (in Fig. 14), (b) on

the square lattice (z = 4) (in Fig. 15), and (c) on the triangular lattice
(z = 6) (in Fig. 3). The comparisons denoted by “X” cannot occur at
the selected sites on the corresponding lattice. The strategy decisions
for the most comparisons do not depend on b. The strategy decisions
for some special comparisons depend on b. For example, for the
comparison between P C

h = 3 and P D
h = 2b on the hexagonal lattice,

the strategy is decided as C if b < 3/2 or as D if b > 3/2.

strategies are simply decided for the remaining 11 comparisons
regardless of b, as shown in Fig. 1(a). For the comparison
between P C

h = 3 and P D
h = 2b, the strategy is decided as C

if b < 3/2 or as D if b > 3/2. Therefore, there can arise two
regimes for the percolation properties on the hexagonal lattice,
one in the interval 1 < b < 3/2 and the other in 3/2 < b < 2.
On the square lattice, the P C

h set is {0,1,2,3,4} and the P D
h set

is {0,b,2b,3b,4b}. As on the hexagonal lattice, the strategy-
decision table for the possible 20 comparisons on the square
lattice is displayed in Fig. 1(b). Thus, there can arise three
regimes on the square lattice, one in 1 < b < 4/3, another
in 4/3 < b < 3/2, and the third in 3/2 < b < 2. On the
triangular lattice, the P C

h set is {0,1,2,3,4,5,6} and the P D
h set

is {0,b,2b,3b,4b,5b,6b}. Among the 49 comparisons between
the two sets, the comparisons of P D

h = 0 do not have to be
considered as on hexagonal and square lattices. Moreover, the
eight comparisons, (P C

h ,P D
h ) = (0,5b), (0,6b), (1,6b), (2,b),

(3,b), (4,b), (5,b), and (6,b), do not occur for any selected site
on the triangular lattice. The strategy-decision table for the
possible 34 comparisons on the triangular lattice is displayed
in Fig. 1(c). Thus, there can arise six regimes, one in 1 < b <

6/5, another in 6/5 < b < 5/4, another in 5/4 < b < 4/3,
another in 4/3 < b < 3/2, another in 3/2 < b < 5/3, and the
last in 5/3 < b < 2. From the strategy-decision tables in Fig. 1,
we can easily understand the mechanism for why different
regimes occur depending on b. We now study the percolation
property for a specific regime on the corresponding lattice via
a simulation.

FIG. 2. (Color online) Plots of the first regime or for 1 < b < 6/5
on the triangular lattice. (a) Plots of pC

f (pC
i ,L) and P C

LC(pC
i ,L) against

pC
i . (b) Plot of pC

i (P C
LC = 0.5) against L. The straight line represents

the relation pC
i (P C

LC = 0.5) = 0.77 × L−0.54. (c) Plots of pD
f (pD

i ,L)
and P D

LC(pD
i ,L) against pD

i . Filled symbols stand for pf ’s and open
symbols stand for PLC’s in any plot in this paper.

B. Triangular lattice

We first investigate the connectivity or the percolation
properties of C clusters and D clusters on the triangular lattice.

The first regime occurs for 1 < b < 6/5, as shown in
Fig. 2. pC

f (pC
i ,L), P C

LC(pC
i ,L), pD

f (pD
i ,L), and P D

LC(pD
i ,L)

are measured using lattice sizes L = 27 − 211. We find that
P C

LC(pC
i ,L) � pC

f (pC
i ,L) > 0.78 except for very small pC

i

[Fig. 2(a)]. Hence, the infinite C cluster always exists in
the steady state, and nearly all C sites are in the infinite C

cluster except for very small pC
i . We study the dependence of

pC
i (P C

LC = 0.5,L) on L to find pC
i (P C

LC = 0.5,L) ∼ L−0.54(1)

as in Fig. 2(b), confirming that the behaviors for very small
pC

i disappear in the limit L → ∞. In contrast, P D
LC(pD

i ,L) � 0
although pD

f (pD
i ,L) > 0 [Fig. 2(c)]. Thus, in the first regime,

C sites always percolate and D sites form only finite isolated
clusters for all pC

i (pD
i ).

The first regime originates from the growth process in which
a special finite C cluster is stable against any update in our
model and grows indefinitely by a certain series of updates.
As shown in Fig. 3(a), the special C cluster is the diamond-
type C cluster. If there is no diamond-type C cluster, it is
confirmed that initial isolated C clusters disappear by updating
processes and D sites cover the entire lattice in the steady
state. On the other hand, if at least one diamond-type C cluster
exists initially, the C cluster grows into an infinite cluster and
only finite D clusters remain in the steady state. The isolated
diamond-type C cluster is stable against any update in our
model for 1 < b < 6/5, because the highest payoff of C sites
in the cluster is 3 and that of the surrounding D sites is 2b(< 3)
[Fig. 3(a)]. Furthermore, if the selected site in an update is a
1© D site of Fig. 3(a), the site changes into the C site because

of 2b < 3. The repetition of the growth process makes a larger
C cluster in which the diamond-type C clusters overlap and
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(a)

(c) 1 2 3 5

(b)

4

FIG. 3. (Color online) (a) Evolution of an initial configuration
containing a diamond-type C cluster (	) to the steady-state config-
uration, in which C sites form an infinite cluster and only finite
isolated D clusters remain. (b) Two growth processes of D clusters.
There exist no growth processes of D clusters except the two growth
processes. (c) Some of the stable base patterns of D clusters. Blue
(open) circles and red (filled) circles represent Cs and Ds in any
figure of configurations, respectively.

connect to one another. The base diamond-type C cluster must
exist for any pC

i ( 
= 0) in the limit L → ∞ because the initial

average number of clusters is equal to L2pC
i

4
(1 − pC

i )10 [23].
Therefore, in the first regime for 1 < b < 6/5, for any pC

i ( 
= 0)
there exists only one stable C cluster that always percolates.

P C
LC decreases slightly from 0.83 to 0.78 as pC

i increases
from 0 to 0.7, whereas P C

LC increases for pC
i > 0.7 [Fig. 2(a)].

To understand this unexpected behavior, stable base patterns
of D clusters are studied. Some of these stable base patterns
are illustrated in Figs. 3(b) and 3(c). As shown in Fig. 3(b),
an isolated D site grows into the two-site D cluster, and two
line-type D clusters grow into a line-type cluster of 5 Ds.
Except for these growths, no D cluster can grow, rather it
shrinks into a stable cluster. We also confirm that the steady
state consisting of the percolating C cluster and the stable D

clusters is an absorbing state [3]. For small pD
i , D sites are

isolated. Since an isolated D site grows into the two-site D

cluster, pD
f increases as pD

i increases from 0. In contrast, for
large pD

i , the initial large D clusters must shrink into one of
the stable D clusters. Thus, pD

f decreases as pD
i increases in

the large pD
i region. These growth mechanisms explain how

P C
LC (pD

f ) increases for pC
i > 0.7 (pD

i < 0.3) and P C
LC (pD

f )
decreases for pC

i < 0.7 (pD
i > 0.3).

In the second regime for 6/5 < b < 5/4, we find pC
f � 0.7

regardless of pC
i and L except for very small pC

i , as shown in
Fig. 4(a). The finite-size effect for very small pC

i is the same
as that in the first regime. P C

LC also does not depend on pC
i but

decreases as L increases. P C
LC(L → ∞) = 0.50(1) is obtained

by the fitting P C
LC(L) = P C

LC(L → ∞) + 4.7(7) × L−1.00(1) as
in Fig. 4(b). Hence, there exists an infinite C cluster for all
pC

i in the steady state. pD
f � 0.3 for any pD

i (pC
i ), whereas

P D
LC decreases as L increases as P D

LC ∼ exp(−aL) [Figs. 4(c)
and 4(d)]. Therefore, in the second regime, a C cluster in the
steady state always percolates and D clusters form only finite
clusters as in the first regime.

The growth mechanism of a C cluster in the second regime
is nearly the same as that in the first regime. But, in contrast

FIG. 4. (Color online) Plots of the second regime or for 6/5 <

b < 5/4. (a) Plots of pC
f (pC

i ,L) and P C
LC(pC

i ,L) against pC
i . (b) Plot

of P C
LC against L. The red curve represents the relation P C

LC(L) =
P C

LC(∞) + 4.7 × L−1, with P C
LC(∞) = 0.50. (c) Plots of pD

f (pD
i ,L)

and P D
LC(pD

i ,L) against pD
i . (d) Plot of P D

LC against L. The straight
line represents the relation P D

LC = 0.20 × exp(−0.0006L). Symbols
stand for the same quantity as those in Fig. 2.

to the first regime, the growth from a single diamond-type C

cluster produces not only an infinite cluster but finite clusters
because of the different growth mechanism of D clusters.
Stable D clusters in the second regime are also combinations
of the base patterns in Figs. 3(b) and 3(c). However, the growth
mechanism of D clusters in the second regime is different from
that in the first regime. The accumulated payoff of the free end
of the line part of a D cluster is 5b, which is larger than the
highest accumulated payoff of a C site or 6. Thus, such a free
end D site can grow. The growth of a D cluster stops if any D

cluster forms a certain combination of stable patterns without
the free end D sites, as in Fig. 5. Therefore, any initial state in

(a) (b) (c)

Closed 
loop-type
structure

Open
structure

FIG. 5. (Color online) (a) Steady-state configuration (SSC) from
the initial configurations with a single diamond-type C cluster. (b)
SSC from the initial configuration with pC

i = 0.5. (c) SSC from an
isolated D site. Any of the SSCs has two main configurations of D

clusters. One is the closed loop-type structure, and the other is the
open structure between stable ends.
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FIG. 6. (Color online) Plots of the third regime or for 5/4 < b <

4/3. (a) Plots of pC
f (pC

i ,L) and P C
LC(pC

i ,L) against pC
i . (b) Plot of

P C
LC(pC

f ,L) against pC
f for pC

i < 0.5. (c) Plot of P C
LC(pC

f ,L) against
pC

f for pC
i > 0.8. (d) Plots of pD

f (pD
i ,L) and P D

LC(pD
i ,L) against pD

i .
(e) Plot of P D

LC(pD
f ,L) against pD

f for pD
i > 0.5. (f) Plot of P D

LC(pD
f ,L)

against pD
f for pD

i < 0.2.

the second regime evolves into a self-organized steady state,
as shown in Fig. 5.

The average over these self-organized states gives pC
f � 0.7

and pD
f � 0.3 regardless of pC

i (pD
i ) and L. D clusters in

the self-organized states have two main substructures. One
is the closed-loop-type structure, and the other is the open
structure between stable ends, as shown in Fig. 5(a). Because
any D cluster consists of only two main substructures, any
self-organized steady state is an absorbing state [3]. P C

LC is
smaller than pC

f because of the closed-loop-type structures.
In contrast, the open structures hinder the formation of large
D clusters and assist the growth of larger C clusters. For
small L, the closed-loop-type structures make P D

LC > 0. As L

increases, the number Ns of the open structures increases and
P D

LC decreases, as in Figs. 4(c) and 4(d). In the limit L → ∞,
there cannot exist an infinite D cluster or P D

LC → 0 because
Ns → ∞. P C

LC also decreases with L because of the closed
loop-type D clusters. However, P C

LC(L → ∞) > 0 because of
D clusters with open structures.

The third regime occurs for 5/4 < b < 4/3, as shown in
Fig. 6. pC

f decreases from 0.76 to 0.72 as pC
i increases to

0.8 but it increases to 1 for pC
i > 0.8 [Fig. 6(a)]. In contrast,

P C
LC exhibits very complicated behavior. For small pC

i , P C
LC

decreases. Then, P C
LC seems to approach 0 for moderate

pC
i and rapidly increases for pC

i > 0.9. The dependences of
P C

LC on pC
f for both pC

i < 0.5 and pC
i > 0.8 are shown in

FIG. 7. (Color online) Finite-size scaling analyses for pC
i < 0.5

in the third regime. (a) Plot of χC(pC
f ,L) against pC

f . (b) Plot
of [pC

critf − pC
maxf (L)] ∼ L−1/ν with pC

critf = 0.7498(1) and 1/ν =
0.75(1). (c) Plot of χC

max ∼ Lγ/ν with γ /ν = 1.78(1). (d) The scal-
ing plot of χC(pC

f ,L)L−γ /ν against (pC
f − pC

critf )L1/ν with pC
critf =

0.7498, γ /ν = 1.78, and 1/ν = 0.75. (e) Plot of P C
LC(pC

critf ) ∼ L−β/ν

with β/ν = 0.11(1). (f) The scaling plot of P C
LC(pC

f ,L)Lβ/ν against
(pC

f − pC
critf )L1/ν with β/ν = 0.11.

Figs. 6(b) and 6(c). Interestingly, the percolation transition of
C clusters with increasing pC

f is clearly observed. In particular,
the transition for pC

i < 0.5 is nearly identical to that for
pC

i > 0.8. The meaning of the result in Figs. 6(b) and 6(c)
is that percolating phases with the infinite C cluster exist for
large pC

f , which occurs not only for large pC
i (>0.95) but also

for small pC
i (<0.15). For moderate pC

i , there exist only finite
C clusters.

To analyze the percolation transition for pC
i < 0.5,

χC(pC
f ,L) in Eq. (4) is first studied [Fig. 7(a)]. From the finite-

size-scaling (FSS) relation [pC
critf − pC

maxf (L)] ∼ L−1/ν [23],
we obtain 1/ν = 0.75(1) and pC

critf = 0.7498(1) for pC
i < 0.5

as in Fig. 7(b). Here, pC
maxf is the pC

f at which χC(pC
f ,L)

is maximal and pC
critf is the critical density at which the

percolation transition on the infinite-sized lattice occurs [23].
From the FSS ansatz for the maximal value of χC(pC

f ,L),
χC

max ∼ Lγ/ν [23], γ /ν = 1.78(1) is also obtained as in
Fig. 7(c). χC(pC

f ,L) satisfies the FSS relation [23]

χC
(
pC

f ,L
) = Lγ/νf

[(
pC

f − pC
critf

)
L1/ν

]
, (5)

with 1/ν = 0.75, pC
critf = 0.7498, and γ /ν = 1.78 as shown in

Fig. 7(d). From P C
LC(pC

critf ) ∼ L−β/ν [23] and pC
critf = 0.7498,
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we also obtain β/ν = 0.11(1) [Fig. 7(e)]. Thus, P C
LC also

satisfies FSS [23],

P C
LC

(
pC

f ,L
) = L−β/νg

[(
pC

f − pC
critf

)
L1/ν

]
, (6)

with β/ν = 0.11, 1/ν = 0.75, and pC
critf = 0.7498 as in

Fig. 7(f). We also investigate the transition property of C

clusters for pC
i > 0.8 in the same way as for pC

i < 0.5, and we
obtain pC

critf = 0.7564(1) and the same critical exponents. The
measured critical exponents of both transitions for pC

i < 0.5
and for pC

i > 0.8 are nearly identical to the exact values
of exponents, ν = 4/3, β/ν = 5/48, and γ /ν = 43/24 of
the random percolation in two dimensions [23]. This result
means that the universality of the critical phenomena for both
percolation transitions of C clusters belongs to that of the
random percolation.

In Figs. 6(d)–6(f), we also investigate the properties of D

clusters in the third regime in the same way as for C clusters.
P D

LC also shows very complicated behavior. For small pD
i ,

P D
LC rapidly increases. Then, P D

LC � pD
f > 0 for moderate

pD
i and P D

LC rapidly decreases for pD
i > 0.7 [Fig. 6(d)]. As

shown in Figs. 6(e) and 6(f), the percolation phase transition
of the D cluster depending on pD

f is also clearly observed.
The D-cluster transition for pD

i < 0.2 (pC
i > 0.8) is also

nearly identical to that for pD
i > 0.5 (pC

i < 0.5). From the
same FSS analyses of the D-cluster transitions for pD

i < 0.2
and pD

i > 0.5, we obtain pD
critf = 0.2436(1) for pD

i < 0.2 and
pD

critf = 0.2502(1) for pD
i > 0.5 as well as the same critical

exponents as those for the C-cluster transitions. These results
imply that both C clusters and D clusters in the third regime
undergo nearly identical percolation transitions if the control
parameter is pC

f (pD
f ). In terms of pC

i (pD
i ), there exist two

percolation transitions, one for small pC
i (or large pD

i ) and the
other for large pC

i (or small pD
i ).

The growth of a single diamond-type seed C cluster in
the third regime produces not only an infinite C cluster but
finite clusters. As in the second regime, any free end of the
line-type part of a D cluster can grow in the third regime.
More new patterns of D clusters in Fig. 8(a) as well as those in
Fig. 3(c) become stable in the third regime. In this regime,
as in the first regime, we find that any steady state is an
absorbing state [3]. Therefore, in the third regime, there can
be many more chances to form the stable D clusters than in
the second regime. Thus, for small pD

i , the number of stable
isolated D clusters increases as pD

i increases. As pD
i increases,

these isolated D clusters merge with one another to form a
large cluster, as shown in Fig. 8(b). This process explains the
percolation transition for pD

i < 0.2 (pC
i > 0.8). In contrast,

the transition for pD
i > 0.5 (pC

i < 0.5) in the third regime is
rather anomalous. To understand this anomalous transition,
the dependences of pC

f and P C
LC on the initial density nd

of the diamond-type seed C clusters are investigated as in
Fig. 8(c). The growing C cluster from a single diamond-type
C cluster produces an infinite cluster with P C

LC � 0.70 and
pC

f � 0.76, which are nearly identical to P C
LC and pC

f for
very small pC

i in Fig. 6. As nd increases, pC
f decreases

slowly, but P C
LC sharply decreases to 0 around nd � 0.003.

For the quantitative analyses, nd (P C
LC = 0.1) is evaluated to

find nd (P C
LC = 0.1,L) = nd (∞) + 1.8(1) × L−1.15(1), where

t = 0 t = 5 t = 10 t = 30

1 2

4 6

3

5

)b()a(

)d()c(

Stable
D-cluster

pi
D = 0.05 pi

D = 0.1

(e)

FIG. 8. (Color online) (a) New stable base patterns of D clusters
in the third regime. (b) Steady-state configurations from the initial
configurations with pD

i = 0.05 and 0.1. (c) Plot of pC
f and P C

LC against
nd . The red dashed line represents P C

LC = 0.1. (d) Plot of nd (P C
LC =

0.1) against L. The red curve denotes the relation nd (P C
LC = 0.1,L) =

nd (∞) + 1.8 × L−1.15, where nd (∞) = 0.0037. (e) Growths of C

clusters from five diamond-type clusters. Growths stop when a stable
D cluster appears between every pair of growing C clusters. t means
the Monte Carlo time.

nd (∞) = 0.0037(1) as in Fig. 8(d). For nd = 0.0037, pC
f �

0.75, which is also very close to pC
critf obtained from FSS

analyses of the transition for pC
i < 0.5 in Fig. 7. Thus, as

nd increases, the infinite C cluster disappears and the infinite
D cluster appears around nd = 0.0037. When there are many
growing C clusters from multiseed C clusters, any C cluster
stops growing when there occurs a stable D cluster between
every pair of growing C clusters, as shown in Fig. 8(e). The
number of such stable D clusters increases as nd increases. For
large enough nd , these D clusters eventually merge with one
another to form an infinite D cluster. This mechanism should
explain the anomalous percolation transition for pD

i > 0.5
(pC

i < 0.5).
The fourth regime occurs for 4/3 < b < 3/2, as shown in

Fig. 9. As shown in Fig. 9(a), P C
LC exhibits very complicated

behavior. To understand the rapid decrease of P C
LC for

pC
i < 0.5, the maximal value P C

maxLC of P C
LC(L) for pC

i <

0.5 is analyzed to find P C
maxLC(L) = P C

maxLC(∞) − 5.2(2) ×
L−0.6(1) with P C

maxLC(∞) = 0.76(1) [Fig. 9(b)]. Furthermore,
pC

i (P C
maxLC) ∼ L−0.48(1) [Fig. 9(c)]. Hence, in the limit L →

∞ there should exist a singular behavior, P C
LC = 0.76(1)

at pC
i → 0 and P C

LC = 0 for pC
i > 0. P C

LC for pC
i > 0.8

or large pC
i in the fourth regime shows nearly the same

percolation transition as that in the third regime. From the
same FSS analyses for pC

i > 0.8, the same critical exponents
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FIG. 9. (Color online) Plots of the fourth regime or for 4/3 <

b < 3/2. (a) Plots of pC
f (pC

i ,L) and P C
LC(pC

i ,L) against pC
i .

(b) Plot of P C
maxLC against L. The red curve represents the

relation P C
maxLC(L) = P C

maxLC(∞) − 5.2 × L−0.6 with P C
maxLC(∞) =

0.76. (c) Plot of pC
i (P C

maxLC) against L. The straight line rep-
resents the relation pC

i (P C
maxLC) = 1.10 × L−0.48. (d) Plots of

pD
f (pD

i ,L) and P D
LC(pD

i ,L) against pD
i . (e) Plot of P D

minLC against
L. The straight line represents the relation P D

minLC = 0.245 ×
exp(−0.0007L). (f) Plot of pD

i (P D
minLC) against L. The red curve rep-

resents the relation pD
i [P D

minLC(L)] = pD
i [P D

minLC(∞)] − 6.0 × L−1.3

with pD
i [P D

minLC(∞)] = 1.00.

as those of the random percolation and pC
critf = 0.7665(1)

are obtained. P D
LC also exhibits very complicated behavior,

as shown in Fig. 9(d). The minimal value P D
minLC of P D

LC for
pD

i > 0.5 satisfies the relation P D
minLC ∼ exp(−aL) with a =

0.0007(1) and pD
i [P D

minLC(L)] = pD
i [P D

minLC(∞)] − 6.0(5) ×
L−1.3(1) with pD

i [P D
minLC(∞)] = 1.00(1) [Figs. 9(e) and 9(f)].

The results in Figs. 9(e) and 9(f) confirm the singular behavior,
P D

LC = 0 at pD
i → 1 and P D

LC � 0.2 in the vicinity of pD
i � 1,

corresponding to P C
LC = 0.76(1) at pC

i → 0. P D
LC for pD

i <

0.2 shows the percolation transition, which corresponds to
the percolation transition of C clusters for pC

i > 0.8. From the
same FSS analyses, the universality of this D cluster transition
is confirmed to belong to that of the random percolation, and
pD

critf = 0.2335(1)(= 1 − pC
critf ) is obtained.

The growth mechanism of the D cluster in the fourth regime
is the same as that in the third regime. Thus, any steady state is
an absorbing state [3]. The percolation transition for pD

i < 0.2
(pC

i > 0.8) comes from nearly the same origin as that for the
same transition in the third regime. To understand the singular
behavior at pC

i → 0 (pD
i → 1), the growth mechanisms of

both C clusters and D clusters must be considered. In the
fourth regime, the hexagonal-type C cluster is not only stable
but grows into a large C cluster in which the hexagonal-type

(a)

(b)

...

(c)

(e)

4th regime

(d)

3rd regime

FIG. 10. (Color online) (a) Evolution of an initial configuration
of a hexagonal-type C cluster in the fourth regime. (b) Plots of P C

LC

from the initial configuration with a single hexagonal-type C cluster
(the black square symbols) and P C

maxLC (the red circle symbols) against
L. (c) Plots of pC

f and P C
LC against the density of a hexagonal-type

seed C cluster (nh). The red dashed line represents P C
LC = 0.1. (d)

Plot of nh(P C
LC = 0.1) against L. The red line represents nh(P C

LC =
0.1) = 22 × L−1.47. (e) An example of hindering effects against the
merging of two growing C clusters in the fourth regime. If the selected
site is the 1© D site, the selected D site changes into the C site because
the highest payoff of NN C sites is 4 and that of NN D sites is 3b. In
the third regime, 3b < 4 and the selected site changes into the C site.
However, in the fourth regime, the D site does not change its strategy
because 3b > 4.

C clusters overlap and connect to one another, as shown in
Fig. 10(a). As shown in Fig. 10(b), P C

LC of the grown cluster
from a single hexagonal-type seed C cluster approaches 0.76
in the limit L → ∞. Therefore, the growing C cluster from
a single hexagonal-type seed C cluster is the origin of the
singular behavior P C

LC = 0.76(1) at pC
i → 0. To understand

this singular behavior, the dependences of pC
f and P C

LC on
the density nh of the hexagonal-type seed C clusters are
investigated as in Fig. 10(c). Since nh(P C

LC = 0.1) ∼ L−1.47(1)

[Fig. 10(d)], the behavior P C
LC = 0 for pC

i > 0 in the limit
L → ∞ should originate from multigrowing C clusters. The
behavior of P C

LC for pC
i > 0 can be explained in the following

way. In the case of Fig. 10(e), we clearly see the difference
between a merging process of growing C clusters in the third
regime and that in the fourth regime. When two growing C

clusters are separated by a D cluster as in Fig. 10(e), the 1© D

site is stable in the fourth regime, while it is unstable in the third
regime, as explained in the caption of Fig. 10(e). Thus, the two
C clusters merge into a larger cluster in the third regime, but
the two clusters cannot merge in the fourth regime. In the limit
L → ∞, such hindering effects of D clusters against merges of
C clusters get more enhanced and prevent growing C clusters
from merging into an infinite C cluster. Only a growing C

cluster from a single seed C cluster evolves into an infinite C
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(c)

(a) (b)

(d)

FIG. 11. (Color online) Plots of the fifth regime or for 3/2 < b <

5/3. (a) Plots of pD
f (pD

i ,L) and P D
LC(pD

i ,L) against pD
i . (b) Plots of

pC
f (pC

i ,L) and P C
LC(pC

i ,L) against pC
i . (c) Steady-state configuration

from the initial configuration with an overlapping hexagonal-type
C cluster and that from the initial configuration with an isolated D

site in the fifth regime. (d) The local strategy reversal process: If the
selected site is one of the 1© sites, the strategy of the site changes
into D because 4b > 6. However, the strategy of a site such as 2©
immediately changes back to C because 5 > 3b.

cluster. This growing mechanism in the fourth regime causes
the singular behavior of P C

LC and P D
LC at pC

i → 0 (at pD
i → 1).

The fifth regime in which pC
f � 0.17, P C

LC � 0, and P D
LC �

pD
f � 0.83 [Figs. 11(a) and 11(b)] occurs for 3/2 < b < 5/3.

In the fifth regime, the D cluster always percolates and only
finite C clusters exist in the steady state. In this regime,
the hexagonal-type C cluster cannot grow but is stable.
Instead, any C cluster of overlapping-hexagonal-type evolves
to produce scattered hexagonal-type C clusters as in the top
left panel of Fig. 11(c). The local strategy reversal process
occurs as in Fig. 11(d), in which two hexagonal-type C clusters
face each other. But such configurations occur very rarely in
the steady state. On the other hand, the triangular ends of
D clusters as in Fig. 8(a) (1–4) as well as the free end of
the line-part can grow into an infinite cluster. Therefore, the
evolution from any initial configuration stops if there remain
only isolated hexagonal-type C clusters in the sea of D sites,
as in Fig. 11(c).

The sixth regime in which pC
f � 0 and pD

f � 1 occurs for
5/3 < b < 2, as shown in Figs. 12(a) and 12(b). The D cluster
always percolates and only very small finite C clusters exist
in the steady state. The small finite C clusters are hexagonal-
type or overlapping hexagonal-type C clusters. The hexagonal-
type C clusters are stable. In contrast, local strategy reversal
processes occur at the edges of the overlapping hexagonal-type
C clusters, as shown in Fig. 12(c). However, these reversal
processes do not affect the percolation behavior. On the other
hand, the growth mechanism of the D cluster is nearly the
same as that in the fifth regime. Hence, in the steady state an
infinite D cluster and only very small C clusters remain in the
steady state.

)b()a(

(c)

FIG. 12. (Color online) (a) Plots of pD
f (pD

i ,L) and P D
LC(pD

i ,L)
against pD

i in the sixth regime or for 5/3 < b < 2. (b) Plots of
pC

f (pC
i ,L) and P C

LC(pC
i ,L) against pC

i . (c) An example of a local
strategy reversal process in this regime. If the selected site is one of
the 1© sites, the strategy of the site changes into C because 4 > 2b.
However, the strategy of a site such as 2© immediately changes back
to D because 3b > 5.

C. Hexagonal lattice

In this section, we explain two regimes occurring on the
hexagonal lattice.

The first regime occurs for 1 < b < 3/2, as shown in
Fig. 13. In this regime, pC

f monotonically increases with
pC

i , as shown in Fig. 13(a). The percolation transition of C

clusters is clearly observed, because P C
LC � 0 for pC

i < 0.7
and P C

LC > 0 for pC
i > 0.7. Using the same FSS analyses,

we obtain 1/ν = 0.75(1), γ /ν = 1.78(1), β/ν = 0.11(1), and
pC

critf = 0.6326(1), which shows that the universality of the
transition also belongs to that of the random percolation.
pD

f also monotonically increases with pD
i . The percolation

transition of D clusters is also observed, because P D
LC � 0 for

pD
i < 0.4 and P D

LC > 0 for pD
i > 0.4 [Fig. 13(b)]. Using the

FSS analyses, we obtain the same critical exponents as those
of the C-cluster transition and pD

critf = 0.6085(1). Hence, both
C clusters and D clusters undergo percolation transitions with
the universality class of the random percolation in the first
regime.

In the first regime, the Y-type C cluster and overlaps of
Y-type C clusters in Fig. 14(a) are stable. On the other hand,

FIG. 13. (Color online) Plots of the first regime or for 1 < b <

3/2 on the hexagonal lattice. (a) Plots of pC
f (pC

i ,L) and P C
LC(pC

i ,L)
against pC

i . (b) Plots of pD
f (pD

i ,L) and P D
LC(pD

i ,L) against pD
i .
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)b()a(

(c)

FIG. 14. (Color online) Stable base patterns of (a) C clusters and
(b) D clusters in the first regime. (c) An example of a local strategy
reversal process in the second regime. If the selected site is one of the
1© sites, the strategy changes into D because 2b > 3. However, the

strategy of a site such as 2© immediately changes back to C because
2 > b.

the line-type D clusters with four or fewer sites are stable
[Fig. 14(b)]. But any C cluster and D cluster cannot grow
into an infinite cluster. Because both C and D clusters exist
only in combinations of stable patterns, any steady state is an
absorbing state [3]. Thus, in this regime, the connection of
such stable clusters is the main mechanism for the percolation
transitions.

The second regime occurs for 3/2 < b < 2. pC
f monoton-

ically increases from 0 to 0.3 as pC
i increases from 0 to 1.

However, P C
LC(pC

i ,L) � 0. Thus, C sites in the steady state
form only finite or nonpercolating clusters. In contrast, the
infinite D cluster always exists in the steady state, because
P D

LC(�pD
f ) increases from 0.7 to 1 as pD

i increases from 0 to
1. In this regime, any free end of the line-type part of a D

cluster can grow, but any C cluster cannot grow. There can
occur local strategy reversal processes at the edges of the C

cluster shown in Fig. 14(c). However, this reversal process
does not affect the percolation behavior. Hence, in the second
regime, the D cluster always percolates or forms an infinite
cluster, whereas there exist only finite C clusters.

D. Square lattice

On the square lattice, we also find three regimes as in
Ref. [19]. In both the first regime for 1 < b < 4/3 and the
third regime for 3/2 < b < 2, D clusters as well as C clusters
undergo the percolation transition. In the second regime for
4/3 < b < 3/2, D clusters are found to always percolate while
C clusters form only finite clusters.

The cluster growth mechanisms as in Secs. II B and II C
were never explained in Ref. [19]. Therefore, in this section
we mainly explain the mechanisms for three regimes, and we
show that the universality of the percolation transition in the
third regime cannot be that of a sort of invasion percolation,
rather it should be that of the random percolation.

The mechanism of the percolation transition of both C

and D clusters in the first regime is nearly the same as in
the first regime on the hexagonal lattice. Stable C clusters
are combinations of the stable patterns in Fig. 15(a). Stable
D clusters are special combinations of the stable patterns in
Fig. 15(b). Thus, in this regime, the connection of such stable
clusters is the mechanism for the percolation transitions of

)b()a(

(c)

FIG. 15. (Color online) Stable base patterns of (a) C clusters and
(b) D clusters in the first regime. (c) An example of a local strategy
reversal process in the second regime. If the selected site is one of the
1© sites, the strategy changes into D because 3b > 4. However, the

strategy of a site such as 2© immediately changes back to C because
3 > 2b.

both C and D clusters. As in the first regime on the hexagonal
lattice, any steady state is also an absorbing state [3] because
both C and D clusters consist of stable patterns.

The mechanism in the second regime is nearly the same as
that in the second regime on the hexagonal lattice. The free
end of the line-type part of a D cluster can grow. Such growth
always makes an infinite D cluster. Hence, in the limit L → ∞,
P C

LC → 0 although pC
f > 0, whereas P D

LC � pD
f > 0 for all

pD
i . As in the second regime on the hexagonal lattice, local

strategy reversal processes occur between the special finite C

clusters, as shown in Fig. 15(c). However, these processes do
not affect the macroscopic behavior either.

In the third regime, the mechanism is nearly the same as that
in the second regime except for the special stable D clusters.
When a growing D cluster becomes a compact D cluster in
which every D site has at least two D NNs as in Fig. 16,
the D cluster cannot grow and become stable. Therefore, for
very small pD

i (pD
i < 0.04), D clusters in the steady state are

only the isolated compact clusters or P D
LC � 0 [Fig. 17(a)] and

thus the C cluster percolates [Fig. 17(b)]. As pD
i increases, the

number of such stable D clusters increases. For pD
i > 0.05,

such compact D clusters merge with one another to form an
infinite cluster, i.e., P D

LC > 0 [Fig. 17(a)], and there remain
only finite C clusters [Fig. 17(b)]. Thus, because many of the
D clusters can grow except for the compact D clusters in the
third regime, the infinite D cluster appears for much smaller
pD

i in the third regime than in the first regime. As in the first
regime on the square lattice, any steady state is an absorbing
state [3].

FIG. 16. (Color online) Some stable base patterns of D clusters
in the third regime.
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FIG. 17. (Color online) Plots of the third regime or for 3/2 <

b < 2 on the square lattice. (a) Plots of pD
f (pD

i ,L) and P D
LC(pD

i ,L)
against pD

i for pD
i < 0.1. (b) Plots of pC

f (pC
i ,L) and P C

LC(pC
i ,L)

against pC
i for pC

i > 0.9 (pD
i < 0.1). (c) Plots of χC(pC

f ,L) against
pC

f . (d) The scaling plot of χC(pC
f ,L)L−γ /ν against (pC

f − pC
critf )L1/ν

with pC
critf = 0.6460, γ /ν = 1.78, and 1/ν = 0.75. (e) Plots of

P C
LC(pC

f ,L) against pC
f . (f) The scaling plot of P C

LC(pC
f ,L)Lβ/ν against

(pC
f − pC

critf )L1/ν with β/ν = 0.11.

Because the universality of the percolation transition of
C clusters in the third regime was argued to belong to
that of invasion percolation with trapping (Ref. [19]), we
carefully study the transitions in the third regime from the
same FSS analyses. We find pC

critf = 0.6460(1), pD
critf =

0.3540(1), 1/ν = 0.75(1), β/ν = 0.11(1), and γ /ν = 1.78(1)
as in Figs. 17(c)–17(f). The measured critical exponents are
nearly identical to the exact values of the exponents of the
random percolation in two dimensions [23]. This result clearly
supports the idea that the universality of the percolation
transition of C and D clusters in the third regime belongs to
that of the random percolation, not that of invasion percolation
with trapping. Physically, one should be careful to establish
the universality class numerically when there is no theoretical
or analytical foundation. In Ref. [19], the universality of the
percolation transition of C clusters in the third regime was
argued to belong to that of the invasion percolation with
trapping [24] only from a numerical estimation of β/ν and γ /ν

by the FSS analyses of the data only for C clusters. However,
invasion percolation is a special self-organized process for
cluster growth. Furthermore, invasion percolation does not
have the phase transition, and thus the critical exponents β, ν,
and γ cannot be defined. Therefore, in Ref. [19], β/ν of the
invasion percolation is estimated by a brute force application
of the formula df = d − β/ν [23] and from the numerical data

for df for the invasion percolation [24]. Hence, the estimation
in Ref. [19] has no physical and theoretical foundation at all.
As can be seen from the cluster formation mechanism in the
third regime, there cannot be any special correlation between
each pair of compact D clusters because each compact D

cluster comes from the growth of a small D cluster. Initially,
such small D clusters should be randomly distributed on the
lattice. Thus the percolation in the third regime must not be an
invasion percolation, rather it must be a random percolation.

III. SUMMARY AND DISCUSSIONS

To understand how cooperation among selfish individuals
emerges and persists, we study the large-scale connectivity
of C clusters and D clusters in SEPDG on various two-
dimensional lattices using the updates of imitation max. From
the numerical analyses of the dependences of P

C (D)
LC and p

C (D)
f

on p
C (D)
i , we find that there are six different regimes on the

triangular lattice (z = 6). In the first and second regimes (1 <

b < 5/4), the C cluster always percolates while D clusters
remain finite. In the third and fourth regimes (5/4 < b < 3/2),
both C clusters and D clusters undergo percolation transitions.
In the fifth and sixth regimes, the D cluster always percolates
while C clusters remain finite (3/2 < b < 5/3) or cooperators
disappear (5/3 < b < 2). On the hexagonal lattice (z = 3),
we find that there are two distinctive regimes. In the first
regime (1 < b < 3/2), both C clusters and D clusters undergo
percolation transitions. For 3/2 < b < 2, the D cluster always
percolates while C clusters form only finite clusters. Finally,
on the square lattice (z = 4) we find three different regimes
as in Ref. [19]. In the first and third regimes (1 < b < 4/3
and 3/2 < b < 2), both D clusters and C clusters show
percolation transitions. In the second regime (4/3 < b < 3/2),
the D cluster always percolates but C clusters form only
finite clusters. The detailed mechanisms for the growth of
C and D clusters in each regime are also shown. In addition,
based on the FSS analysis, we obtain 1/ν � 0.75, γ /ν � 1.78,
and β/ν � 0.11 for any observed percolation transition in
SEPDG on various two-dimensional lattices. These values
are identical with those for the random percolation in two
dimensions. Hence, the observed percolation transitions on
various two-dimensional lattices belong to the universality
class of the random percolation.

As emphasized in the Introduction, the competition be-
tween b and z of the base lattice is the main factor to decide
percolation properties. The greater variety of percolation prop-
erties in the steady state occurs on the lattice with the larger
z. In particular, we clearly see that the following theoretical
perspectives are right: the structure of any percolating C cluster
is compact, whereas the main structure of the percolating D

cluster is line-type.
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