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To understand the dependence of phase-transition natures in explosive percolations on space dimensions, the
number ncut of cutting bonds (sites) and the fractal dimension dCSC of the critical spanning cluster (CSC) for the
six different models introduced in Phys. Rev. E 86, 051126 (2012) are studied on two- and three-dimensional
lattices. It is found that ncut(L → ∞) = 1 for the intrabond-enhanced models and the site models on the two-
dimensional square lattice with lattice size L. In contrast, ncut for the intrabond-suppressed models scales as
ncut � Ldcut with dcut = 1. dCSC = 2.00(1) is obtained for the intrabond-enhanced models and the site models,
while dCSC = 1.96(1)(< 2) is obtained for the intrabond-suppressed models in two dimensions (2D). These results
strongly support that the intrabond-enhanced models and the site models undergo the discontinuous transition in
2D, while the intrabond-suppressed models do the continuous transition in 2D. On the three-dimensional cubic
lattice, we find that dcut > 0 and dCSC = 2.8(1)(< 3) for all six models, which indicates that the models undergo
the continuous transition. Based on the finite-size scaling analyses of mean cluster size and order parameter, all
six models in 3D show nearly the same critical phenomena within numerical errors.
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I. INTRODUCTION

Since Achlioptas, D’Souza, and Spencer [1] suggested an
explosive percolation model, there have been intensive studies
on explosive percolations. The Achlioptas model [1] was
originally argued to show the discontinuous phase transition by
suppressing the growth of large clusters [1–3]. The explosive
percolation models triggered intensive studies to understand
transition natures [2–17]. However, subsequent studies have
proved that the transition for the explosive percolations is
continuous on the complete graph and the Bethe lattice [4–8].
Therefore, the phase transition for the explosive percolations
is physically established to be continuous in the mean-field
level or in higher dimensions.

In contrast, the transition nature for the explosive per-
colations in lower dimensions is still not fully understood.
Especially, in two dimensions (2D), there still has been
controversy between the continuous transition [7,9] and the
discontinuous transition [3,10–17]. The controversy should
come from ambiguity in the details of explosive percolation
models on lattices. In this context, we have established a
complete set of explosive percolation models on lattices to
find out whether the transition nature depends on the details of
a given model [16]. By studying the cluster-size distribution,
the second largest cluster, and the finite-size scaling (FSS)
analyses, it has been found that the intrabond-enhanced
models and the site models in 2D show the discontinuous
transition, whereas the intrabond-suppressed models in 2D
show the continuous transition [16]. Furthermore, there have
been few studies in moderate dimensions like three or four. To
understand transition natures completely including the upper
critical dimension dc [4], one should study the dimensional
dependence of transition natures.

Recently, an interesting relevant research result has been
reported [17]. In Ref. [17], by controlling the growth of the
spanning cluster by cutting (or red) bonds, the percolation
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transition can be made to be discontinuous. Here, a cutting
bond means the bond which would disconnect the spanning
cluster if it is removed. Therefore, it is an important study to
investigate whether the specific explosive percolation models
inherently avoid cutting bonds or not. If a model avoids cutting
bonds naturally, the model should show the discontinuous
transition. Otherwise, the model undergoes the continuous
transition. The physical mechanism to form cutting bonds
should depend on the connectivity of the base structure or on
the dimension of the base lattice. Thus it is also very interesting
to study the dependence of the number of cutting bonds on the
dimension in a percolation model.

For this purpose, we investigate structural properties of
critical spanning clusters of the explosive percolation models
[16] on two-dimensional square and three-dimensional cubic
lattices. Especially, the dependence of the number ncut of
cutting bonds on lattice size L is measured. The fractal di-
mensions dCSC of critical spanning clusters are also measured.
From these measurements, we first confirm transition natures
of the models in 2D shown by different methods [16]. It is
found that ncut decreases as L increases and dCSC = 2 in
the intrabond-enhanced models and the site models on the
square lattice. These results strongly support the discontinuous
transition. In the intrabond-suppressed models which show
the continuous transition in 2D, the connectedness length
exponent ν is numerically shown to satisfy the relation
ν = 1/dcut [18–20]. From measured dCSC, the scaling relation
β/ν = d − dCSC [21] is also numerically confirmed, where β

is the critical exponent of the order parameter. In contrast,
we find that ncut increases as L increases in all six models
on the cubic lattice. Furthermore, dCSC of all the models in
3D satisfies the relation β/ν = d − dCSC. Thus all the models
show the continuous transition in 3D regardless of the details
of the models. The critical phenomena of the models in 3D are
also analyzed by using FSS ansatz for the average size S(p,L)
of finite clusters and the order parameter P∞(p,L). From the
analyses, it is numerically shown that the critical phenomena
of all the models in 3D are nearly the same.
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II. MODELS

The explosive percolation models in cubic lattices consid-
ered in this paper have already been defined in Ref. [16].
For clarity purposes let’s explain them briefly here. There are
two fundamental percolation models on lattices [21], the site
percolation and the bond percolation. Initially, all the sites (or
bonds) of a lattice are unoccupied. The percolation transition is
considered by occupying sites (or bonds) using the following
process.

In a unit growth process of the explosive site percolations,
two vacant sites A and B are randomly selected. Let {sAi

}
({sBj

}) be the sizes of nA (nB) clusters which would be
connected by occupying the site A (B). In the d-dimensional
cubic lattice nA (nB) is at most 2 × d. In the site model
with a product rule (SP model), the site A is occupied if 1 ×∏nA

i=1 sAi
< 1 × ∏nB

i=1 sBi
. Otherwise, the site B is occupied.

Similarly, in the site model with a sum rule (SS model), the
site A is occupied if (1 + ∑nA

i=1 sAi
) < (1 + ∑nB

j=1 sBj
).

Four explosive bond percolation models also have been
considered in Ref. [16]. First two unoccupied bonds a and b

are randomly selected. If the bond a is an interbond which
connects two clusters of sizes sa1 and sa2, then the product ξa

and the sum σa are clearly defined as ξa ≡ sa1 × sa2 and σa ≡
sa1 + sa2, respectively. If the bond is an intrabond, it internally
connects two sites in the same cluster and there may exist
some ambiguities to define the product and the sum. Thus ξa

can be defined in two different ways. One is ξa ≡ sa1 × 1 (bond
product type 1 model: BP1 model). The other is ξa ≡ sa1 × sa1

(bond product type 2 model: BP2 model). The product ξb for
bond b is defined in the same way. The sum σa is defined
similar to σa ≡ sa1 + 0 (bond sum type 1 model: BS1 model)
or σa ≡ sa1 + sa1 (bond sum type 2 model: BS2 model). Then,
occupy the bond a if ξa < ξb (σa < σb). Otherwise, occupy the
bond b. The physical meanings of these models are that the
type 1 (BP1 and BS1) models are intrabond-enhanced models
and type 2 (BP2 and BS2) models are intrabond-suppressed
models.

III. STRUCTURAL PROPERTIES OF SPANNING
CLUSTER IN 2D

As the cluster grows, there should occur a spanning cluster
which connects the top and the bottom of the lattice (see
Fig. 1). The spanning cluster which occurs at the smallest

(critical) fraction pc of occupied bonds (sites) is the critical
spanning cluster (CSC). In low-dimensional lattices, the
fraction of sites in CSC of the infinite-sized lattice can
be regarded as the order parameter P∞ of the percolation
transition [21].

To understand transition natures of the explosive perco-
lation models, we first investigate physical properties of the
cutting bond (site) of CSC for each model. The cutting bond
(site) would disconnect CSC if it is removed (see Fig. 1).
In ordinary (random) percolation which shows the continuous
phase transition the number of cutting bonds (sites), ncut, scales
as [18–21]

ncut � Ldcut , (1)

where dcut is the fractal dimension of cutting bonds (sites).
Furthermore, based on the node-link-blob picture of CSC, dcut

for ordinary percolation and Potts-correlated percolation is
shown to exactly satisfy the relation [18–20]

dcut = 1/ν (2)

in any d, where ν is the connectedness length exponent [20].
Especially, on the two-dimensional square lattice, dcut = 0.75
as shown in Fig. 2(a) for ordinary percolations, which is one of
the numerical evidences for the relation (2) [18]. In contrast, if
the percolation transition is discontinuous, then it is expected
that ncut(L) → finite const as L → ∞.

The dependences of ncut on L for the six models in 2D are
shown in Figs. 2(b) and 2(c). All data in Fig. 2 is obtained
from averaging over at least 103 realizations. As shown in
Fig. 2(b), ncut for the intrabond-enhanced (BP1 and BS1)
models and the site (SP and SS) models monotonically
decrease as L increases. If ncut(L)’s for these models are
forced to fit the relation (1), one gets dcut < 0. This decreasing
property of ncut(L) means that ncut(L → ∞) = 1. This result
clearly supports the fact that two main relatively compact and
large clusters merge to form CSC by occupying a bond (a site),
which is a strong evidence for the discontinuous transition.
This evidence is nearly identical to that for the discontinuous
transition in Potts models with q > 4 in 2D, because dcut of
the models has been shown to go to zero [20]. This strong
evidence also coincides with the result in Ref. [16] that both the
intrabond-enhanced models and the site models in 2D show the
discontinuous transition, which was based on the cluster-size
distribution and the property of the second largest cluster.

(a) (b) (c) poTpoTpoT

mottoBmottoBmottoB

FIG. 1. (Color online) Critical spanning clusters (CSCs) on a two-dimensional square lattice with L = 64 (a) for ordinary percolations, (b)
for the BP1 model, and (c) for the BP2 model. Black bonds are bonds in CSCs. Dark gray (red) bonds are cutting bonds. The distribution of
cutting bonds in (a) and (c) spreads relatively widely in CSCs. But cutting bonds in (b) are extremely localized.
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FIG. 2. (Color online) (a) Dependence of ncut on the size L of
the square lattice for ordinary bond percolation (OBP) and ordinary
site percolation (OSP). By fitting to Eq. (1) dcut = 0.75(1) is obtained
for both the percolations. (b) The same plots for the BP1, BS1, SP,
and SS models. Measured pc are pc = 0.694(1) for the BP1 model,
pc = 0.598(1) for the BS1 model, pc = 0.773(1) for the SP model,
and pc = 0.692(1) for the SS model. (c) The same plots for the BP2
and BS2 models. Measured pc are pc = 0.5266(1) for the BP2 model
and pc = 0.5270(1) for the BS2 model. By fitting, dcut = 1.00(1) is
obtained for both the BP2 and BS2 models.

In contrast, ncut of the intrabond-suppressed (BP2 and BS2)
models satisfy the relation (1) with dcut > 0 very well as shown
in Fig. 2(c). From the data in Fig. 2(c), dcut = 1.00(1) is
obtained for both the BP2 [14] and BS2 models. ν = 1.00(2)
was obtained by FSS analyses of the order parameter, the
susceptibility, and the cluster-size distribution for the BP2 and
BS2 models [16]. Thus the relation (2) is also valid for the
intrabond-suppressed models in 2D. The physical property
of the cutting bond strongly supports that the intrabond-
suppressed models show the continuous transition in 2D.

In Ref. [17], by avoiding or suppressing cutting bonds, the
percolation transition can be made to be discontinuous. In the
intrabond-enhanced models in 2D, the avoidance of cutting
bonds occurs naturally and inherently and is the main physical
mechanism for the discontinuous transition. In contrast, the
avoidance is not so prominent in the intrabond-suppressed
models.

To confirm transition natures in another way the fractal
dimension, dCSC, of CSCs is also measured. In ordinary
percolations, the number of sites in CSC, nCSC, scales as [21]

nCSC � LdCSC , (3)

FIG. 3. (Color online) (a) Dependence of nCSC on L in 2D for the
intrabond-enhanced (BP1 and BS1) models and the site (SP and SS)
models. By fitting to Eq. (3), dCSC = 2.00(1) are obtained for the four
models. (b) The same plots for the intrabond-suppressed (BP2 and
BS2) models. dCSC = 1.96(1) are obtained for the two models.

with dCSC = 91/48 in 2D [21]. Figure 3 shows that nCSC

satisfies Eq. (3) very well for all six models. For the intrabond-
enhanced models and the site models, we find dCSC = 2.00(1).
This result d = 2 = dCSC physically means that P∞, defined as
the fraction of sites in CSC, is a nonzero constant k at p = pc

in the limit L → ∞ as P∞ = nCSC/Ld = kL2/L2 = k. Thus
the order parameter P∞ is sure to jump from zero to a nonzero
value at p = pc. In addition, it is well known that CSC
has a compact structure when the transition is discontinuous
near p = pc [17]. Therefore, the result d = dCSC for the
intrabond-enhanced models and the site models in 2D is also
strong evidence for the discontinuous transition.

In contrast, for the intrabond-suppressed models, d >

dCSC = 1.96(1) is obtained from Fig. 3(b). Thus P∞ �
limL→∞ nCSC/Ld = 0 at p = pc, which implies the contin-
uous transition. Furthermore, P∞ is expected to scale at
p = pc as

P∞ ∼ L−β/ν = L−(d−dCSC), (4)

when the transition is continuous [21]. From the results
dCSC = 1.96(1) and ν = 1/dcut = 1.00(2), β = 0.04(1) is ob-
tained for the BP2 and BS2 models, and this β value is identical
to that obtained from FSS analysis of P∞(p,L) [16].

IV. STRUCTURAL PROPERTIES OF SPANNING
CLUSTER IN 3D

To understand the dependence of transition natures on the
lattice dimension, the structural properties of CSCs for the six
models on a three-dimensional simple cubic lattice are also
studied.
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FIG. 4. (Color online) Dependence of ncut on the size L for six
models in 3D. Measured pc’s are pc = 0.3474(1) for the BP1 model,
pc = 0.4405(1) for the SP model, pc = 0.3314(1) for the BS1 model,
pc = 0.4280(1) for the SS model, pc = 0.3221(1) for the BP2 model,
and pc = 0.3175(1) for the BS2 model. By fitting to Eq. (1), dcut =
0.95(3) for the BP1 and SP models, dcut = 1.35(3) for the BS1 and SS
models, and dcut = 1.53(1) for the BP2 and BS2 models are obtained,
respectively.

In contrast to ncut’s in 2D, ncut’s of all six models in 3D
satisfy Eq. (1) with dcut > 0. As shown in Fig. 4, dcut = 0.95(3)
for the BP1 and SP models and dcut = 1.35(3) for the BS1
and SS models are obtained, respectively. The result dcut >

0 for the intrabond-enhanced models and the site models
physically means that transition nature in these models is
changed from the discontinuous transition to the continuous
transition as d increases from d = 2 to d = 3. As d increases,
the connectivity of underlying structures increases and the
intrabond enhancement may not be relevant to make the
inherent avoidance of cutting bonds (sites) in 3D. Thus this
result also physically implies why the explosive percolation
shows the continuous transition in the mean-field level and on
the complete graph [4–8]. Another physical fact which can be
seen from results for dcut in 3D is the bond-site duality. As
shown in Fig. 4, dcut for the BP1 model is the same as that for
the SP model. dcut for the BS1 model is also the same as that
for the SS model. Therefore, the bond-site duality which has
been shown in 2D [16] still sustains in 3D.

In Fig. 5, we display the measured nCSC in 3D. For all
six models, d > dCSC = 2.8(1) are obtained from the data in
Fig. 5. Thus P∞ � limL→∞ nCSC/Ld = 0. This result provides
another clear evidence that the intrabond-enhanced models and
the site models undergo the continuous transition in 3D. Here,
the bond-site duality in 3D [16] can also be verified.

FIG. 5. (Color online) Dependence of nCSC on L in 3D for six
models. By fitting to Eq. (3), dCSC = 2.8(1) for the six models.

FIG. 6. (Color online) (a) Plot of S(p,L) against L for the BP1
model in 3D. (b) Plot of [pc − pmax(L)] against L. The solid line
represents the relation pc − pmax(L) ∼ L−1/ν with pc = 0.3474(1)
and 1/ν = 1.6(1). (c) Plot of Smax(L) against L. The solid line
denotes Smax(L) ∼ Lγ/ν with γ /ν = 2.57(3). (d) The scaling collapse
of S(p,L) with pc = 0.3474, γ /ν = 2.57, and 1/ν = 1.6.

Since the models show the continuous transition in 3D,
the critical properties of the models are analyzed by FSS
ansatz for the average size S(p,L) of finite clusters and the
order parameter P∞(p,L). Until now, we have focused on the
structural properties of CSC and thus simulations are carried
out using the open boundary condition along the direction
perpendicular to the top and bottom planes in the cubic lattice.
However, S(p,L) and P∞(p,L) obtained from simulations
with the open boundary condition do not satisfy FSS ansatz
quite well. It is known that the inhomogeneity of the system
increases when the open boundary condition is used in higher
dimensions [22]. In this sense, S(p,L) and P∞(p,L) for
FSS analyses are obtained from simulations using a periodic
boundary condition to remove the inhomogeneity of a finite
system and minimize systematic difference in accordance with
the finite-size effect.

S(p,L) for the BP1 model obtained from simulations is
shown in Fig. 6(a). By fitting the relation pc − pmax(L) ∼
L−1/ν as Fig. 6(b), 1/ν = 1.6(1) and pc = 0.3474(1) are
obtained. Here, pmax(L) means the p at which S(p,L) is
maximal [21]. From the relation, Smax ∼ Lγ/ν , of the maximal
value of S(p,L) [21], γ /ν = 2.57(3) is also obtained as shown
in Fig. 6(c). S(p,L) for the BP1 model satisfies FSS ansatz [21]

S(p,L) = Lγ/νf [(p − pc)L1/ν], (5)

very well with γ /ν = 2.57, 1/ν = 1.6, and pc = 0.3474 [see
Fig. 6(d)].

P∞(p,L) for the BP1 model obtained from simulations is
shown in Fig. 7(a). From the relation P∞(pc,L) ∼ L−β/ν [21]
and P∞(pc,L) obtained from simulations, β/ν = 0.16(6) as
the inset of Fig. 7(a). Figure 7(b) shows that P∞(p,L) for the
BP1 model also satisfies FSS ansatz [21]

P∞(p,L) = L−β/νg[(p − pc)L1/ν], (6)
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FIG. 7. (Color online) (a) Plot of P∞(p,L) against L for the BP1
model in 3D. Inset: plot of P∞(pc,L) against L and the solid line
represents the relation P∞(pc,L) ∼ L−β/ν with β/ν = 0.16(6). (b)
The scaling collapse of P∞(p,L) with pc = 0.3474, β/ν = 0.16,
and 1/ν = 1.6.

very well with β/ν = 0.16,1/ν = 1.6, and pc = 0.3474.
Measured β/ν = 0.16(6) from the FSS ansatz is close to
that obtained from the relation β/ν = d − dCSC [Eq. (4)]
with dCSC = 2.8(1) in Fig. 5. The critical probability pc =
0.3474(1) estimated from S(p,L) and P∞(p,L) for the BP1
model is nearly identical to that estimated from the analyses
of CSC as shown in Fig. 5. The obtained exponents, β/ν =
0.16(6) and γ /ν = 2.57(3), satisfy the hyperscaling relation,
2β/ν + γ /ν = d, quite well in 3D. We also obtain nearly the
same exponents for the remaining five models as those for
the BP1 model. pc depends on the details of the models. The
measured pc’s in 3D are pc = 0.4405(1) for the SP model,
pc = 0.3314(1) for the BS1 model, pc = 0.4280(1) for the
SS model, pc = 0.3221(1) for the BP2 model, and pc =
0.3175(1) for the BS2 model, respectively. These results imply
that all six models in 3D show the continuous transition. Fur-
thermore, their critical phenomena are nearly the same in 3D.

However, the relation dcut = 1/ν is not valid for the models
in 3D. The bonds in the explosive percolation models are not
random but correlated and the relation (2) does not necessarily
hold in higher dimensions.

V. SUMMARY AND DISCUSSIONS

In summary, we investigate the structural properties of CSC
for the six explosive percolation models in 2D and 3D. In the
intrabond-enhanced (BP1, BS1) models and the site (SP, SS)
models in 2D, it is found that ncut(L → ∞) = 1. This behavior
of ncut strongly supports the discontinuous transition in the
BP1, BS1, SP, and SS models. Moreover, for these models,
dCSC = d = 2 is measured. The result dCSC = d = 2 also
strongly supports the discontinuous transition, because P∞ ∼
nCSC/Ld ∼ const at p = pc in the limit L → ∞. Therefore,
the transition for the intrabond-enhanced models and the site
models in 2D should be discontinuous. In contrast, dcut > 0
and dCSC < d = 2 are measured for the BP2 and BS2 models
in 2D. The numerical result dcut = 1 for the BP2 and BS2
models also coincides with 1/ν obtained by the previous FSS
analyses of the order parameter, the susceptibility, and the
cluster-size distribution [16]. Furthermore, it is also found
that β = 0.04(1) obtained from d − dCSC = β/ν is also nearly
identical to that obtained from the previous analysis [16].
Thus the intrabond-suppressed (BP2 and BS2) models should
undergo the continuous transition in 2D.

The structural properties of the six models in 3D are also
studied. The results dcut > 0 and d > dCSC are obtained for
all six models. Thus transitions in the models should be
continuous in 3D. This result means that only the intrabond-
enhancement cannot make the inherent avoidance of cutting
bonds in 3D. Furthermore, S(p,L) and P∞(p,L) are measured
to understand the critical phenomena of the six models in
3D. From the FSS ansatz, β/ν = 0.16(6), γ /ν = 2.57(3),
and 1/ν = 1.6(1) are obtained for the six models. The
obtained exponents also satisfy the hyperscaling relation,
2β/ν + γ /ν = d, quite well in 3D. These results imply that the
critical phenomena of the six models in 3D are nearly the same.

As explained before, the natural or inherent suppression of
cutting bonds (sites) does not act physically to make the transi-
tion discontinuous in three and higher dimensions. Thus, even
in the intrabond-enhanced models, the higher connectivity in
d � 3 is the main mechanism for the continuous transition.
From the connectivity point of view one can also understand
why the explosive percolation shows the continuous transition
on the complete graph or in the mean-field level.

There has been only one paper discussing dc of the explosive
percolation [4]. From a renormalization-group theory [4]
dc of a certain variant of the Achlioptas, D’Souza, and
Spencer model [1] was argued to be smaller than 3. In the
explosive percolation models considered in this paper, the
hyperscaling relation 2β/ν + γ /ν = d = 3 still holds within
the measurement errors in 3D. If dc < 3, the hyperscaling
relation would be 2β/ν + γ /ν = dc < 3. However, since the
order-parameter exponent β is known to be very small for
the explosive percolation models in the mean-field level
[3–5,7–10,16], it should be very hard to determine dc using
the numerical simulations.

Our final comment is on the maximal length scale Lmax

that is chosen for the calculation of dcut. Lmax = 2048(Nmax =
L2

max = 222) in 2D and Lmax = 128(Nmax = L3
max = 221) in 3D

are used. These Lmax’s for the calculation of dcut are somewhat
smaller than Lmax = 8192 in 2D used for a modern paper on
a percolation model [7] and for our previous measurements
of the cluster-size distribution, the order parameter, and the
susceptibility of all six models [16]. In 3D, Lmax = 256 can
be easily used for the measurement of the order parameter
and the susceptibility of all six models (see Figs. 6 and 7).
However, to calculate ncut of a CSC in simulation, the cluster
determining algorithm such as the burning algorithm and the
Hoshen-Kopelman algorithm [21] should be repeated times
comparable to the system size. Therefore, using larger system
sizes for dcut is practically or computationally intractable.
However, even for measurements of dcut’s using Lmax = 2048
in 2D and Lmax = 128 in 3D, dcut and dCSC are obtained with
enough accuracy, because ncut and nCSC satisfy the power laws
(1) and (3) very accurately as in Figs. 2–5.
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