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Complete set of types of phase transition in generalized heterogeneous k-core percolation
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We study heterogeneous k-core (HKC) percolation with a general mixture of the threshold k, with kmin = 2 on
random networks. Based on the local tree approximation, the scaling behaviors of the percolation order parameter
P∞(p) are analytically obtained for general distributions of the threshold k. The analytic calculations predict
that the generalized HKC percolation is completely described by the series of continuous transitions with order
parameter exponents βn = 2/n, discontinuous hybrid transitions with βH = 1/2 or βA4 = 1/4, and three kinds
of multiple transitions. Simulations of the generalized HKC percolations are carried out to confirm analytically
predicted transition natures. Specifically, the exponents of the series of continuous transitions are shown to satisfy
the hyperscaling relation 2βn + γn = ν̄n.
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I. INTRODUCTION

The structural transitions in complex networks have at-
tracted many researchers in various scientific areas due to their
profound physical implications and wide range of important
applications [1–4]. Recently, k-core (KC) percolation [5–8]
and heterogeneous k-core (HKC) percolation [9–13] have been
intensively studied. As the generalized concept of the giant
component, KC gives a deeper insight into the structure and
organization of complex networks [10,11]. KC percolation is
relevant to understanding the resilience of a network under
random damage [12]. KC percolation was also found to be
applied to important research fields, such as protein-interaction
networks [14], jamming [15], and neural networks [16]. The
KC on a network is defined as the maximal cluster or the giant
component in which each node is directly linked to at least k

nodes within the cluster itself [6–8]. Here k is often called the
threshold k. In statistical physics, it is very important to find
new universality classes of phase transition. In this sense KC
percolation is also theoretically very important, because two
novel transitions which cannot exist in ordinary percolation
were found. One was the continuous transition in two-core
percolation [5–8], whose critical phenomena belong to the
same universality class as the biconnecting percolation [17].
The other was a special type of discontinuous transition, the
so-called hybrid transition, which occurs in KC percolation
with k � 3 [5–7].

In spite of wide applications and theoretical merits, KC
percolation has intrinsic limitations. In real systems, some
individuals are more resilient than others, and thus some nodes
remain in the core structure with fewer neighbors than others.
However, in KC percolation, the threshold k of any node
is identical. As a natural extension, HKC percolation was
introduced to overcome intrinsic limitation [10]. HKC on a
network is also defined as the maximal cluster in which each
node i has its own threshold ki and has at least ki directly
linked neighbors within the cluster itself [10]. Moreover,
HKC percolation with generalized thresholds was also found
to have more wide applications to various fields, such as
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opinion formations [18], epidemic spreading [19], robustness
of network [9–12].

Until now, HKC percolations were mainly studied by
using binary mixtures of k on complex networks [10–12].
In these studies it was argued that there are two additional
transitions which had not been found in KC percolation. One
was the multiple transitions, first showing the continuous
transition, and later the discontinuous hybrid transition. The
other was the continuous transition with so-called tricritical
phenomena [11]. HKC percolation with a trinary mixture
of k with ki � 3 on random networks was also investigated
to show different types of hybrid transitions [13]. However,
these studies on HKC percolation with the binary mixtures
[10–12] and the trinary mixture [13] of k are far from the
completion because of the following reasons. First of all,
one should study HKC percolation with general mixtures of
ki in which there probably exists a much richer variety of
transition natures. Furthermore, the previous studies [10–13]
were based mainly on the analysis of order parameter. To
decide the universality class of a continuous transition exactly
and to confirm the analytically suggested transition natures
numerically, one should need other physical properties such as
the susceptibility in addition to the order parameter. The only
research on the susceptibility of HKC percolation until now
was a numerical study to understand the tricritical phenomena
for the binary mixture of k [11]. They used the corona cluster
to obtain the susceptibility exponent γ [8,10,11]. However, the
corona cluster is a very special cluster in which each node i

has exactly ki directly linked neighbors, and thus the analysis
based on the corona cluster might not be an effective method
to obtain the susceptibility exponent γ in HKC percolation
with general mixtures of ki . So one needs another framework
to calculate γ .

In this paper, HKC percolations with general mixtures of
ki on Erdös-Rényi networks are studied to find the complete
set of phase transition natures at the mean-field level. Using
the local tree approximation [10–13], the transition natures
depending on probabilities assigned to the ki values are
analytically derived. The complete set of possible transition
natures in generalized HKC percolations consists of a series
of continuous transitions with the order parameter exponent
βn = 2/n (n = 1,2,3, . . .), discontinuous hybrid transitions,
and multiple transitions.
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The local tree approximation mainly calculates the order
parameter exponent β [10–12]. To decide the universality
class of a continuous transition precisely and to confirm
the analytically suggested transition natures numerically,
simulations on HKC percolation are performed. Since HKC
percolation considers only the maximal (giant) cluster, we use
the fluctuation of the order parameter as the susceptibility.
The fluctuation of the order parameter has widely been used
to calculate γ in studies on the various percolation problems
[20–24] as well as the mean size of finite clusters [25].

Using the finite-size scaling ansatz of the order parameter
and the susceptibility, the analytically predicted transition
natures are confirmed by numerical simulations. Specifically,
the nth universality class with the hyperscaling relation
2βn + γn = ν̄n is numerically confirmed at the theoretically
predicted combination of assigned probabilities to ki values.

II. ANALYTIC RESULTS

Let us consider a network with N nodes. Each node i on
the network is assumed to have a quenched integer threshold
ki . Then the HKC on the network is defined as the maximal
cluster in which each node i is directly linked to at least ki

nodes in the cluster itself. We here consider HKC percolation
based on site (node) dilution. In HKC percolation, nodes
of a given network are randomly removed with probability
1 − p and one determines how the fraction of occupied
nodes, P∞(p), in HKC varies as p is decreased [10–12]. The
HKC percolation transition thus means the transition from the
state with P∞(p) > 0 (ordered state) to that with P∞(p) = 0
(disordered state). HKC percolation on random networks [26]
with the degree distribution P (q) = e−〈q〉 〈q〉q /q! is now
considered. The probability rk for a node to have the threshold
k must satisfy the normalization condition

∑kmax
k=kmin

rk = 1,
where kmax (kmin) is the maximal (minimal) of ki . The HKC
percolation with kmin = 1 has already been studied at a deeper
level [10,12]. Thus in this paper we focus on the transition
natures for the cases with kmin = 2.

In the local tree approximation [10–12], a (ki − 1)-ary
subtree rooted at i is the tree in which each occupied node
j in the subtree has at least (kj − 1) occupied child nodes. Let
Z(p) be the probability that a randomly chosen node i is the
root of a (ki − 1)-ary subtree for given p. Then, P∞(p) has
been shown to be written as [10–12]

P∞(p) = p

kmax∑
k=kmin

rk

∞∑
q=k

P (q)
q∑

l=k

(
q

l

)
Zl(1 − Z)l , (1)

and Z(p) has been shown to satisfy the self-consistent equation
[10–12]

Z = p

kmax∑
k=kmin

rk

∞∑
q=k

qP (q)

〈q〉
q−1∑

l=k−1

(
q − 1

l

)
Zl(1 − Z)q−1−l .

(2)
Equation (2) has only the trivial solution Z(p) = 0 in the dis-
ordered state. In the ordered state, Eq. (2) should additionally
have the nontrivial solution Z(p) > 0, which satisfies

p = 1/f (Z), (3)

where

f (Z) = 1

Z

kmax∑
k=kmin

rk

∞∑
q=k

qP (q)

〈q〉
q−1∑

l=k−1

(
q − 1

l

)
Zl(1−Z)q−1−l .

(4)

Equation (3) should have a unique physical solution Z(p) in
the ordered state or p > p∗, whereas it does not have any
solution Z(p) in the disordered state. The HKC is defined
as the maximal cluster under the given conditions. Therefore
the physical solution Z(p) in the ordered state should be the
largest solution of Eq. (3) in the range 0 � Z � 1. The HKC
percolation threshold p∗ thus satisfies p∗ = 1/f (Z∗), where
f (Z∗) is the global maximum of f (Z). A continuous transition
occurs when Z∗ = 0. In contrast, a discontinuous transition
occurs when Z∗ > 0.

Let us first consider a trinary mixture of ki ∈ {2,3,4}.
From the condition

∑4
k=2 rk = 1, rk’s are described by two

parameters as r2 = r , r3 = (1 − r)s, and r4 = (1 − r)(1 − s).
Then f (Z) for the trinary mixture can be written as the compact
form

f (Z) = 1 − e−〈q〉Z

Z
− 〈q〉(1 − r)e−〈q〉Z

[
1 + 〈q〉1 − s

2
Z

]
.

(5)

From Eq. (5), we find seven different typical functional forms
of f (Z) depending on r and s, as shown in Fig. 1(b). In
the region D1, f ′(Z = 0) > 0 and Z∗ > 0. On the curve d,
f ′(Z = 0) = 0, f ′′(Z = 0) > 0, and Z∗ > 0. In the region
D2, f ′(Z∗) = 0, f ′′(Z∗) < 0, and Z∗ > 0. Therefore, in the
slashed region of Fig. 1(a), including D1 [s > r/(1 − r)],
D2, and d (s = r/(1 − r) < 1/2), discontinuous transitions
occur because Z∗ > 0. It is confirmed that the discontinuous
transitions are all the same type of a hybrid transition
with P∞(p) − P∞[p∗(r,s)] ∝ (p − p∗)βH with βH = 1/2, as
already found on the lines s = 1(r < 1/2) and s = 0(r <

0.223 996 . . .) [12].

FIG. 1. (Color online) (a) Set of transition natures of HKC
percolation with the trinary mixture of ki ∈ {2,3,4} on random
networks with 〈q〉 = 10, depending on r and s. In the slashed region of
D1, D2, and d, discontinuous hybrid transitions with βH = 1/2 occur.
In C the transition is continuous with β1 = 2. On curve t continuous
transitions with β2 = 1 occur. At point X continuous transition with
β3 = 2/3 occurs. In M, multiple transitions occur. (b) Typical forms
of f (Z) corresponding to the regions, curves, and the point of r and
s. The horizontal solid line in each graph stands for 1/p∗ and the
dashed line denotes 1/p�.
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In contrast, continuous transitions occur in the region C,
satisfying two conditions, s < r/(1 − r) and f ′(Z) < 0. To
understand the transition nature of HKC percolation, a power
series expansion of f (Z) around Z = 0,

f (Z) = 〈q〉r − a1
〈q〉2

2!
Z + a2

〈q〉3

3!
Z2 + · · · , (6)

is considered, where a1 = r − s + rs, a2 = 1 − 3s + 4rs, and
so on. In the region C, a1 > 0, f ′(0) < 0, and Z∗ = 0; thus
Z(p) ∝ (p − p∗) with p∗ = 1/〈q〉r . Moreover, in the region
C, f (Z) is a monotonic decreasing function as shown in
Fig. 1(b), and thus

P∞(p) ∝ (p − p∗)β1 (7)

with β1 = 2, because

P∞(p) = p
〈q〉2r

2
[Z(p)]2 + p

〈q〉3(s − r + rs)

3!
[Z(p)]3 + · · ·

(8)

in the limit p → p∗+. The universality class with β1 = 2 was
first found in the biconnecting percolation [17] and later in
the two-core percolation [5–8,12]. Let us call this universality
class the 1st universality class in HKC percolation.

On the curve t (s = r/(1 − r) > 1/2), f ′(0) = 0 and
f ′(Z) < 0 for 0 < Z � 1. Thus on the curve t, f (Z) = 〈q〉r +
[a2〈q〉3Z2]/3! + · · · and one can obtain Z(p) ∝ (p − p∗)1/2

with p∗ = 1/〈q〉r . Therefore

P∞(p) ∝ (p − p∗)β2 (9)

with β2 = 1, and this continuous transition was first found for
r = 1/2 and s = 1 [11]. The universality class with β2 = 1
should be called the 2nd universality class.

In the remaining region M of Fig. 1(a) between C and
D2, a local maximum f [Z∗

� (p�) > 0] with f ′(Z∗
� ) = 0 and

f ′′(Z∗
� ) < 0 exists, even though f [Z∗(p∗) = 0] should be the

global maximum [see f (Z) of M in Fig. 1(b)]. Because p∗ <

p�, the multiple transitions (i.e., the continuous transition with
β1 = 2 first occurs at p = p∗ and the discontinuous hybrid
transition with βH = 1/2 follows at p = p�) occur in the
region M, as shown on the line s = 0 and 0.223 996 · · · <

r < 0.296 3 [12]. We call these transitions type-1 multiple
transitions.

Finally, an anomalous continuous transition occurs at the
boundary point X (r = 1/3 and s = 1/2, or r2 = r3 = r4),
where the curve t and the region M cross. At X, f ′(0) =
f ′′(0) = 0 and f ′(Z) < 0 for 0 < Z � 1. Therefore Z(p) ∝
(p − p∗)1/3 with p∗ = 1/〈q〉r , and

P∞(p) ∝ (p − p∗)β3 (10)

with β3 = 2/3. This universality class with β3 = 2/3 should
be the 3rd universality class.

Other transition natures arise for the general mixture of
ki . Let us consider the mixture of ki ∈ {2,3,4,5}. Similarly
to the previous trinary mixture, rk’s are described by three
parameters as r2 = r , r3 = (1 − r)s, r4 = (1 − r)(1 − s)u, and
r5 = (1 − r)(1 − s)(1 − u). Depending on the parameter u,
two sets of transition natures are found. For u � 1/2, the set
of transition natures is the same as that in Fig. 1, but the
boundaries are shifted depending on r , s, and u. We call this
set the first set of transition natures. In this set the curve t and

FIG. 2. (Color online) (a) Set of transition natures of HKC
percolation with the mixture of ki ∈ {2,3,4,5} for u = 0.3(< 1/2).
The region M meets the part of curve t between tL and tR. On part
of the curve, multiple transitions occur as in the region M, but the
continuous transition of multiple transitions has β2 = 1. In the region
MD, multiple discontinuous transitions occur. (b) f (Z)’s at points tR,
tL, and A4. The typical forms of f (Z) on the part of the curve between
tL and tR and in MD.

the region M cross at the point X [r = u/(1 + 2u) and s =
u/(1 + u), or r2 = r3 = r4]. At the point X [r = u/(1 + 2u)
and s = r/(1 − r) = u/(1 + u), or r2 = r3 = r4], f (Z) can be
written as

f (Z) = 〈q〉r − 〈q〉4

4!

2u − 1

1 + 2u
Z3 + · · · . (11)

For u > 1/2 the critical phenomena at point X in the first
set belong to the third universality class with β3 = 2/3 as in
Fig. 1. In contrast, if u = 1/2, f ′(0) = f ′′(0) = f ′′′(0) = 0
and

P∞(p) ∝ (p − p∗)β4 (β4 = 1/2) (12)

at point X. Thus the continuous transition at point X for
u = 1/2 belongs to another universality class, or the 4th
universality class.

On the other hand, for u < 1/2, the special point X does
not appear, but the region M crosses the part of the curve t
between two points tL and tR, as shown in Fig. 2(a). At the
point tR, the inflection point of f (Z) exists at Z = ZI (> 0)
or f ′(ZI ) = f ′′(ZI ) = 0, as shown in Fig. 2(b). At the point
tL, f (0) = f (Z∗ > 0) and f ′(0) = 0. On the part of curve t
between tL and tR, a local maximum f [Z∗

� (p�) > 0] exists,
even though f [Z∗(p∗) = 0] should be the global maximum.
Since p∗ < p� and f ′(0) = 0, the continuous transition with
β2 = 1 first occurs at p = p∗. Then a discontinuous hybrid
transition with βH = 1/2 also occurs at p = p�. Thus, on
that part of the curve new multiple transitions, which are
distinct from the multiple transitions in the region M with
β1 = 2, occur. We call these new transitions type-2 multiple
transitions. In addition, multiple discontinuous transitions
occur in the region MD. As shown in Fig. 2(b), f (Z) in
the region MD has two maxima, f (Z∗

1 ) and f (Z∗
2 ), with the

condition f (Z∗
1 ) > f (Z∗

2 ) for Z∗
1 < Z∗

2 . Therefore the first in
MD is a hybrid transition with βH = 1/2 from nonpercolating
phase to HKC percolating phase. The second is also a transition
with βH = 1/2 between low-k phase and a high-k phase [13].
At a special point A4 on the boundary between D1 and MD,
another transition nature called the A4 singularity [13] occurs.
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At A4, f ′(Z∗) = f ′′(Z∗) = f ′′′(Z∗) = 0 holds. The A4 singu-
larity indicates the hybrid transition as P∞(p∗) ∝ (p − p∗)βA4

with βA4 = 1/4. For a given u(< 1/2), the A4 singularity
appears at a unique point on a two-parameter rs plane.
For example, the A4 singularity occurs at the combination
{r = 0.217 06 . . . ,s = 0.288 78 . . . ,u = 0.3}, as shown in
Fig. 2(a). In the limit u → 1/2−, the point A4 approaches
the point (r = 1/4,s = 1/3). The boundary of MD between tR
and A4 can be determined by the condition that f (Z) has one
inflection point at Z = ZI (> Z∗), or f ′(ZI ) = f ′′(ZI ) = 0.
On the boundary of MD between A4 and tL, f (Z∗

1 ) = f (Z∗
2 )

with Z∗
2 > Z∗

1 > 0 holds. Therefore, for u < 1/2, the second
set of transition natures is composed of continuous transitions
with β1 = 2 or β2 = 1, the hybrid transitions with βH = 1/2
or βA4 = 1/4, and three types of multiple transitions.

For the general mixture of ki ∈ {2,3,4, . . . ,kmax}, the first
set of transition natures as Fig. 1(a) appears if the special
point X exists. Otherwise, the second set as Fig. 2(a) appears.
The conditions of the existence of the point X are r2 =
r3 = r4 and Z∗ = 0. rk’s for the general mixture can also
be parameterized as r2 = r , r3 = (1 − r)s, r4 = (1 − r)(1 −
s)u, r5 = (1 − r)(1 − s)(1 − u)t , and

∑kmax
k=6 rk = (1 − r)(1 −

s)(1 − u)(1 − t). If r2 = r3 = r4, or r = u/(1 + 2u) and s =
r/(1 − r) = u/(1 + u), f (Z) in Eq. (4) for the general mixture
is expanded as

f (Z) 
 〈q〉r + 〈q〉4

4!

t − tu − u

1 + 2u
Z3 + · · · (13)

when Z → 0+. Therefore, if u < t/(t + 1), f ′(0) = f ′′(0) =
0,f ′′′(0) > 0, and Z∗ > 0. Thus when u � t/(t + 1), the point
X exists and the first set of transition natures appears. When
u < t/(t + 1), the point X does not exist and the second set of
transition natures appears. As for the mixture ki ∈ {2,3,4,5},
only two sets of transition natures as Figs. 1(a) and 2(a) appear
for the general mixture and no further different set appears.

For the general mixture of ki ∈ {2,3,4, . . . ,kmax}, there
exists an essential difference compared to the transition
natures for the mixture of ki ∈ {2,3,4,5}. The essential
difference is the transition nature at the special point X when
u = t/(1 + t), and the nature depends on r6,r7, . . . ,rkmax .
Equation (4) can be written as

f (Z) =
∞∑
l=0

blZ
l, (14)

where bl = l+2
〈q〉

∑∞
q=l(

q

l + 2)P (q)
∑l

k=0( l

k)rk+2(−1)l+k . From
Eq. (14), f (0) − f (Z) ∝ Zn when r2 = r3 = · · · = rn+1.
Furthermore,

f ′(Z) = −e−〈q〉Z

Z2

∞∑
k=2

〈q〉kZk

k!

[
k∑

l=2

(rl − rk+1)

]
, (15)

and thus f ′(Z) < 0 when r2 = r3 = · · · = rn+1 and r2 > rk

for k > n + 1. Therefore, the nth universality class with

P∞ ∝ (p − p∗)βn(βn = 2/n) (16)

appears at the point X when r2 = r3 = · · · = rn+1 and r2 > rk

for k > n + 1, because f (Z) is a monotonic decreasing
function and Z ∝ (p − p∗)1/n with p∗ = 1/〈q〉r .

Except the transition nature at the point X, the transition
natures are mainly dependent upon r,s,u, and t [or rk(k � 5)],

even though the boundaries in Figs. 1(a) and 2(a) slightly move
as rk values for k > 5 vary. This result physically means that
rk’s with relatively smaller k affect the transition nature more
strongly than rk’s with relatively larger k. When r > 0.5, for
instance, only the 1st universality class appears, regardless of
the values of s, u, t , etc.

III. NUMERICAL SIMULATIONS

To confirm the analytically derived transition natures
in HKC percolation, the numerical simulations on random
networks are performed. First, random networks with N nodes
and 〈q〉 = 10 are constructed by the Erdös-Rényi model [26].
Then a threshold ki is assigned to each node i in accordance
with the probability rki

. Each node is removed with probability
1 − p, and the HKC is extracted by the following algorithm:
(i) Remove every node i that has fewer occupied neighbors
than ki . (ii) Some of survived nodes may remain with fewer
survived neighbors than their thresholds. Then remove these
nodes. Repeat this process until no further removal is possible.
(iii) The largest remaining cluster is the HKC for the given p.

Then Pmax(p,N ) ≡ 〈smax(p,N )〉 /N and P∞(p) =
limN→∞ Pmax(p,N ), where smax(p,N ) is the number of nodes
in the HKC. To decide a universality class precisely, we
consider the fluctuation of the order parameter

χ (p,N ) =
〈
s2

max

〉 − 〈smax〉2

N
(17)

as the susceptibility [20,22–24], which scales as χ (p) =
limN→∞ χ (p,N ) ∼ (p − p∗)−γ in a continuous transition.
Since the dimension of random networks is infinite [26],
χ (p,N ) and Pmax(p,N ) in a continuous transition should
satisfy finite-size scaling ansatz

χ (p,N ) = Nγ/ν̄G[(p − p∗)N1/ν̄] (18)

and

Pmax(p,N ) = N−β/ν̄F [(p − p∗)N1/ν̄], (19)

where ν̄ = dcν [25]. Therefore, from the simulation data of
〈smax(p,N )〉 and

〈
s2

max(p,N )
〉
and the finite-size scaling ansatz,

one can obtain β, γ , and ν̄ of a continuous transition, which
must satisfy the hyperscaling relation 2β + γ = ν̄.

For the mixture of ki ∈ {2,3,4,5} with r2 = r , r3 = (1 −
r)s, r4 = (1 − r)(1 − s)u, and r5 = (1 − r)(1 − s)(1 − u), the
numerical simulations are carried out. χ (p,N ) and Pmax(p,N )
are obtained for various combinations of {r,s,u}. Typical
results are shown in insets of Figs. 3(a) and 3(b).

From the simulation data and the scaling ansatz, critical
exponents are estimated to compare with the analytic results.
For example, we estimate the critical exponents β4, γ4, and
ν̄4 at the point X (r = 1/4,s = 1/3,u = 1/2) in the following
way. The scaling ansatz (18) makes the maximal of χ (p,N ) for
the given N , χmax[pmax(N ),N ], and pmax(N ) at which χ (p,N )
is maximal satisfy the relations

pmax(N ) − p∗ ∝ N−1/ν̄ (20)

and

χmax[pmax(N ),N ] ∝ Nγ/ν̄ . (21)
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FIG. 3. (Color online) The numerical data confirming the 4th
universality class for the mixture ki ∈ {2,3,4,5} when r = 1/4,
s = 1/3, and u = 1/2. (a) Scaling collapse of χ (p,N ) with ν̄4 and
γ4 obtained from the fits in Figs. 4(a) and 4(b). Inset: Plot of χ (p,N )
against p. (b) Scaling collapse of Pmax(p,N ), with ν̄4 and β4 obtained
from the fits in Figs. 4(a) and 4(c). Inset: Plot of Pmax(p,N ) against
p.

By fitting Eq. (20) to the simulation data of pmax(N ) as
shown in Fig. 4(a), p∗ and ν̄4 are estimated as p∗ 
 0.400(2)
and ν̄ 
 2.4(1). Similarly, γ4/ν̄4 
 0.57(2) is obtained using
Eq. (21), as shown in Fig. 4(b). Finally, β4/ν̄4 
 0.21(1) is
also obtained using Eq. (19) or

Pmax(p∗) ∝ N−β/ν̄ , (22)

with p∗ = 0.400 as in Fig. 4(c). Numerically obtained results,
β4 
 0.50(5) and p∗ 
 0.400(2), are very close to the ana-
lytically obtained results β4 = 1/2 and p∗ = 1/〈q〉r = 2/5
at the point X (r = 1/4,s = 1/3,u = 1/2). Furthermore, the

FIG. 4. (Color online) (a) Plot of pmax(N ) − p∗ against N . p∗ 

0.400(2) and ν̄4 
 2.4(1) are estimated from pmax(N ) − p∗(∞) ∝
N−1/ν̄ . (b) Plot of χmax[pmax(N ),N ] against N . γ4/ν̄4 
 0.57(2) is
estimated from χmax ∝ Nγ/ν̄ . (c) Plot of Pmax(p∗,N ) against N .
β4/ν̄4 
 0.21(1) is estimated from Pmax(p∗) ∝ N−β/ν̄ with p∗ =
0.400.

obtained exponents β4 
 0.50(5), γ4 
 1.37(9), and ν̄4 

2.4(1) will satisfy the hyperscaling relation 2β4 + γ4 = ν̄4.
Because β’s from analytical results are fractional numbers
and the exponents should be mean-field exponents, other
critical exponents should physically be fractional numbers.
The numerically obtained critical exponents are close to β4 =
1/2, γ4 = 7/5, and ν̄4 = 12/5. As shown in Figs. 3(a) and 3(b),
Pmax(p,N ) and χ (p,N ) satisfy the scaling relations Eqs. (18)
and (19) with the exponents obtained in Fig. 4 very well.

The critical exponents of other universality classes are
confirmed through the same numerical method. Exponents
very close to β1 = 2,γ1 = −1, and ν̄1 = 3 are obtained at two
combinations, {r = 1/2,s = 1/2,u = 1} and {r = 2/5,s =
1/5,u = 1} in region C. This set of exponents confirms the 1st
universality class and is the same set as that obtained from the
mean-field theory of biconnecting percolation [17]. The set of
exponents close to β2 = 1,γ2 = 1, and ν̄2 = 3, which confirm
the 2nd universality class, is obtained at two combinations
{r = 2/5,s = 2/3,u = 1} and {r = 3/8,s = 3/5,u = 1} on
curve t. The set of exponents close to β3 = 2/3,γ3 = 4/3,
and ν̄3 = 8/3 is obtained exactly at the point X (r = 1/3,s =
1/2,u = 1) and confirms the 3rd universality class. Finally, the
set of exponents close to β4 = 1/2,γ4 = 7/5, and ν̄4 = 12/5
is obtained exactly at the point X (r = 1/4,s = 1/3,u = 1/2)
from the simulation data, as shown in Fig. 3. This set of
exponents confirms the 4th universality class. All the sets
of critical exponents obtained from simulations satisfy the
hyperscaling relation 2βn + γn = ν̄n very well. In this way,
one can confirm the analytically predicted series of universality
classes with βn = 2/n as well as the multiple transitions and
discontinuous hybrid transitions at the analytically predicted
combinations {rk} by the simulation.

IV. SUMMARY AND CONCLUSION

In summary, the analytic calculations and numerical simu-
lations of generalized HKC percolation are performed. In the
analytic calculations, the exact conditions for each transition
nature are obtained. Furthermore, we show that the critical
phenomena of continuous transitions in HKC percolation
belong to one of the series of the universality classes with

TABLE I. Complete set of transition natures in HKC percolation.
Exponents in each universality class satisfy the hyperscaling relation
2β + γ = ν̄.

Continuous transition β γ ν̄

1st universality class β1 = 2 γ1 = −1 ν̄1 = 3
2nd universality class β2 = 1 γ2 = 1 ν̄2 = 3
3rd universality class β3 = 2/3 γ3 = 4/3 ν̄3 = 8/3
4th universality class β4 = 1/2 γ4 = 7/5 ν̄4 = 12/5

...
...

...
...

nth universality class βn = 2/n
...

...

Dis. hybrid transition βH = 1/2 or βA4 = 1/4

Multiple transitions (β1 = 2 or β2 = 1) → (βH = 1/2)
(βH = 1/2) → (βH = 1/2)
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βn = 2/n. The discontinuous hybrid transitions with βH =
1/2 and βA4 = 1/4 also occur. Multiple transitions which first
show the continuous transition with β1 = 2 (type-1) or β2 = 1
(type-2) also occur, and later the hybrid transition. There are
multiple discontinuous transitions with which first a hybrid
transition with βH = 1/2 occurs and later another hybrid with
βH = 1/2 transition also occurs. The numerical simulations
of HKC percolation are also performed to confirm the series
of universality classes and to find the other exponents, γ and
ν̄. We also confirm that β, γ , and ν̄ for each universality class
satisfy the hyperscaling relation 2β + γ = ν̄. The complete

set of transition natures in HKC percolation is displayed in
Table I.
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