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Classification of transport backbones of complex networks
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Transport properties in random and scale-free (SF) networks are studied by analyzing the betweenness centrality
(BC) distribution P (B) in the minimum spanning trees (MSTs) and infinite incipient percolation clusters (IIPCs)
of the networks. It is found that P (B) in MSTs scales as P (B) ∼ B−δ . The obtained values of δ are classified
into two different categories, δ � 1.6 and δ � 2.0. Using the mapping between BC and the branch size of tree
structures, it is proved that δ in MSTs which are close to critical trees is 1.6. In contrast, δ in MSTs which
are supercritical trees is shown to be 2.0. We also find δ = 1.5 in IIPCs, which is a natural result because IIPC
is physically critical. Based on the results in MSTs, a physical reason why δ � 2 in the original networks is
suggested.
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Ubiquitousness of weblike structures has triggered a huge
number of studies on complex networks [1–5]. Early studies
on structural properties of complex networks have successfully
uncovered many interesting topological features. Among
them, the most important finding was that those weblike struc-
tures share some common properties. Small-worldness is one
of the well-known common features of various networks. For
more quantitative analyses of such complex structures, degree
distribution, clustering coefficient, degree-degree correlation,
betweenness centrality, etc., were studied in detail. In addition
to such topological properties, the dynamical properties on
complex networks such as transport [6,7], synchronization
[8], and epidemic spreading [9] were also investigated. The
interplay between the dynamical and topological properties
of complex networks is also crucial to understand various
dynamical phenomena in complex networks [10]. From
this point of view, understanding the transport property in
complex networks is very important to uncover the underlying
evolutionary mechanisms in diverse disciplines of sciences,
including physics, biology, and sociology. Examples include
metabolic fluxes in metabolic cycle [11], information flow
between individuals [12], and diffusive dynamics on complex
networks [7]. Like many other dynamical properties, transport
in complex networks is also known to be crucially affected
by the underlying structures such as the self-similarity of
network [7].

Recently, for a more realistic description of real networks,
much effort has been focused on weighted networks [13,14]
in which a weight is assigned to each link. An example
of weight is the transportation cost between cities in trans-
portation networks. In such weighted networks, reducing
the transportation cost is one of the important factors to
determine the route to move from one node to the others.
Thus, the minimum spanning tree (MST), which connects
all nodes with the minimum total weights, is regarded as
an important transport backbone of the network. Another
important transport backbone of the network is the infinite
incipient percolation cluster (IIPC).
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The transport in various networks was quantitatively
studied [6,15–18] based on the scaling behavior of the
betweenness centrality (BC) distribution P (B). BC of a node
is the number of shortest paths in a network passing through
the node [15]. Thus, P (B) is an important quantity which
characterizes the transport in complex networks. Recently,
P (B)’s in MSTs and IIPCs of both random and scale-free (SF)
networks were studied to characterize the transport property
of the complex networks, where MSTs were constructed by a
random weight assignment scheme [6]. Based on the numerical
measurements, P (B) was argued to satisfy a power law,

P (B) ∼ B−δ, (1)

with δ = 1.6–1.7 in MSTs and δ � 1.2 in IIPCs [6]. These
values of δ significantly deviate from the values δ � 2.0 and
δ = ∞ measured in the original SF and random networks,
respectively [6,16–18]. This implies that the transport property
in MST or in IIPC differs from that in original networks.
Therefore, to understand the physical property and to provide
a better strategy for the enhancement of the global transport, it
is crucial to find the physical origin of such differences in the
various networks.

In this Rapid Communication we show that the transport
backbones are divided into two fundamental classes based on
the measured value of δ. From the relation between BC and
the branch size of the transport backbone, it is found that
δ = 3/2 when the transport backbone is a critical tree and
δ = 2 when the backbone is a supercritical tree [19,20]. This
result clearly indicates that δ > 1.2 in IIPCs, which contradicts
the numerical observation of Wu et al. [6]. Similar results
were found in the hierarchical distribution of subcommunities
within communities [21]. In addition, it is found that the
obtained value of δ in MSTs which are physically very close
to a critical tree is slightly larger than 3/2. Such a deviation is
explained by the real tree structure of the MSTs. Additionally,
based on the insights obtained from the results in transport
backbones, we also provide a possible origin of δ � 2.0 in
various original networks [16–18].

To study the transport in MSTs and IIPCs, random and
SF networks are first constructed. For a construction of SF
networks with a prescribed degree distribution, P (k) ∼ k−γ ,
the static model is used [16]. In the static model, the weight
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FIG. 1. (Color online) Plots of P (B) against B in MSTs extracted
from the random and SF networks. (a) MSTs are from the networks
where the weight wij is random. (b) MSTs are from networks with
wij = 1/(kikj ), and (c) MSTs are from those with wij = kikj . Solid
lines correspond to the relation P (B) ∼ B−2.0, and dashed lines
denote the relation P (B) ∼ B−1.6.

Wi = i−α is assigned to each node i (i = 1, . . . ,N). Then,
two different nodes (i,j ) are chosen by using the probabilities
Wi/

∑
k Wk and Wj/

∑
k Wk and are connected if the two

nodes (i,j ) are not already linked. In this network, γ and
α satisfy the relation γ = (1 + α)/α. To construct random
networks, α is set to be zero in the static model. Next, the
transport backbones of the constructed networks are extracted.
IIPC is obtained in the following way. Starting from the given
network, a link is randomly chosen to be removed. Then,
κ ≡ 〈k2〉/〈k〉 is checked. If κ > 2, the removing process of
links is continued. Otherwise, the removing process is stopped
because the largest cluster in the network becomes IIPC [6]
at κ = 2. To extract MSTs of constructed SF and random
networks, a weight wij to each link between nodes i and j is
assigned by three assignment schemes. The simplest one is the
random weight assignment scheme in which wij is a random
number in the interval [0,1]. In the second weight assignment
scheme, wij = 1/(kikj ). An example of this kind of weighted
networks is a scientist collaboration network [14]. In the third
weight assignment scheme, wij = kikj . An example of the
third kind is the airport network [14]. Then, MSTs are extracted
by using Prim’s algorithm [22].

To find the characteristics of the transport backbones, the
probability distributions of BC P (B) in MSTs and IIPCs are
measured. BC of node v, Bv , is defined as [16,23,24]

Bv ≡
N∑

i=1

N∑
j=i

Si,v,j

Si,j

. (2)

Here Si,j is the total number of the shortest paths from node
i to j , and Si,v,j is the number of the shortest paths from
node i to j which pass through node v [24]. Due to the
complexity in the computation of B several algorithms have
been suggested [16,23]. In our analysis, we use Newman’s
algorithm to measure P (B) [23]. P (B)’s measured in MSTs
extracted from the networks with N = 105 are displayed in
Fig. 1. P (B)’s satisfy the power law in Eq. (1) when B > 100.
Furthermore, as shown in Figs. 1(a) and 1(b), the measured δ is
either 1.6(1) or 2.0(1) when wij is random or wij = 1/(kikj ).
δ = 1.6(1) in MSTs both from random networks and from SF
networks with γ > 3, whereas δ = 2.0(1) in MSTs from SF
networks with γ < 3. On the other hand, the measured δ in
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FIG. 2. Schematic illustrations of (a) the branch size a of each
node in a hierarchical tree rooted at node i and (b) the number of new
branches σ at each node. d represents the distance to a node from the
root i, and Nd is the number of nodes at distance d .

MSTs from the networks with wij = kikj is 1.6(1), regardless
of γ , as shown in Fig. 1(c). Therefore, MSTs can be classified
into two different categories. The first one is MSTs with
δ � 1.6, and the other one is MSTs with δ � 2.0.

The physical origin of why only two different categories
exist can be explained by the mapping between BC and the
branch size of tree structures [19,20]. The branch size is
an important quantity to characterize a hierarchical tree [see
Fig. 2(a)]. The branch size of node v, avi , in a hierarchical
tree rooted at node i is defined as the number of nodes
in the subtree rooted at node v [see Fig. 2(a)] [25]. It is
well known that the branch size distribution follows a power
law [19,20],

P (a) ∼ a−τ . (3)

The exponent τ is known to be τ = 3/2 in a critical tree and
τ = 2 in a supercritical tree [19,20]. Since the tree does not
have a loop, the branch size avi becomes exactly the same as
the number of the shortest paths from the root i to every node
passing through node v, i.e., avi = ∑N

j=1 Si,v,j . Therefore,
from Eq. (2) BC of v in a tree is written as

Bv = 1

2

(
1 +

N∑
i=1

avi

)
(4)

because Si,j = 1 in any tree. From Eqs. (3) and (4)
and Ramsay’s rule for the distribution of sums of inde-
pendent identically distributed Pareto variables [26], we
obtain

δ = τ. (5)

Therefore, if the transport backbone is a critical tree,
then δ = 3/2, and δ = 2 if the transport backbone is
supercritical.

A tree becomes critical when the branching ratio is 〈σ 〉 = 1.
On the other hand, a tree becomes supercritical when 〈σ 〉 > 1
[see Fig. 2(b)] [19]. However, direct measurement of 〈σ 〉 from
an already-constructed finite tree is not trivial because of a
strong finite-size effect. In order to investigate the branching
ratio of MSTs, an effective branching ratio σd defined as σd ≡
Nd+1/Nd is first measured in exact critical and supercritical
trees. Here d represents the distance to a node from the root
i, and Nd is the number of nodes at distance d [see Fig. 2(b)].
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FIG. 3. (Color online) (a) Plots of σd against d for an exact
critical tree (squares) and an exact supercritical tree (circles) with
N = 104. σd for the critical tree shows a long plateau around σd = 1
(solid line). (b) Plots of σd measured in MSTs extracted from the
networks with N = 105 using random wij . σd ’s in MSTs from random
networks and SF networks with γ > 3 show a long plateau around
σd = 1. In contrast, σd in MST from SF networks with γ < 3 does
not have any plateau. The inset shows δ against the ratio of the size
of supercritical trees to that of critical trees r .

In Fig. 3(a) σd ’s for exact critical and supercritical trees are
displayed. The critical tree has a much larger diameter than
the supercritical tree for the same N , and σd of the critical
tree has a long plateau around σd = 1. On the other hand, the
supercritical tree has a relatively small diameter, and σd of the
supercritical tree decays much faster than that of the critical
tree without any plateau around σd = 1. In Fig. 3(b) we show
σd in MSTs extracted from the networks with random wij

as an example. σd ’s in MSTs from random networks and SF
networks with γ > 3 show that the MSTs have a relatively
long diameter and a long plateau around σd = 1 as the exact
critical tree. On the other hand, σd in MSTs from SF networks
with γ < 3 does not have such a plateau. These results indicate
that MSTs from random networks and SF networks with γ > 3
are close to the critical tree, but that from a SF network with
γ < 3 becomes supercritical. From the results in Fig. 1(a), it is
identified that P (B) ∼ B−1.6 for σd = 1. In contrast, P (B) ∼
B−2.0 when σd shows the supercritical behavior. It is confirmed
that P (B) shows the same behavior in MSTs from the networks
with wij = 1/(kikj ) and wij = kikj .

When σd of MST behaves like a critical tree, the obtained
value of δ is close to δ = 3/2 but slightly deviates from
δ = 3/2. To find the origin of such a slight deviation, P (B)
is measured on a combined tree in which a critical tree is
connected to supercritical trees. In the combined tree, some
of dangling nodes of the critical tree are randomly chosen.
Then, each of the randomly chosen nodes is connected to a
supercritical tree. In the inset of Fig. 3(b), the measured δ’s
against the ratio of the size of the supercritical trees to that of
the critical tree r are displayed. From the data it is found that δ

FIG. 4. (Color online) Plots of P (B) measured in the IIPC from
the random networks. The dashed line denotes the relation P (B) ∼
B−1.25, and the solid line denotes P (B) ∼ B−1.5. The inset is a plot
of σd . The solid line denotes σd = 1 as a guide to the eye.

for the combined tree increases as the fraction of nodes in the
part with supercritical trees increases and approaches δ = 2.0.
So the slight deviation can be explained by the fact that the
MST with δ = 1.6 is very close to an exact critical tree but has
a small fraction for the supercritical tree.

Since IIPC is obtained at the percolation threshold, IIPC
should physically be a critical tree. As shown in the inset
of Fig. 4, σd in IIPC from the random network shows the
characteristics of a critical tree (〈σ 〉 � 1). Additionally, P (a)
on the IIPC is found to satisfy P (a) ∼ a−τ with τ = 1.5.
These results clearly prove that the IIPC is a critical tree.
Thus, it is not theoretically possible that δ � 1.25 for the IIPC
as argued in Ref. [6]. As shown in Fig. 4, we find that δ � 1.25
in the small IIPC with the number of nodes NIIPC = 110,
which is obtained from the random network with N = 213.
However, as NIIPC gets larger, δ approaches 1.5. In the IIPC
with NIIPC = 104 which is obtained from the random network
with N = 106, δ = 1.5(1) is exactly measured (see Fig. 4).
This clearly shows that δ � 1.25 for IIPC was underestimated
due to the finite-size effect [6].

Finally, we want to discuss δ in original networks them-
selves in the light of the insights obtained from the results
in transport backbones. In many cases it is well known that
the local tree approximation in sparsely connected networks
predicts the correct topological and dynamical behaviors of
networks, such as percolation [5]. Thus, if the local tree
approximation is valid, then the possible value of δ in original
networks should be in the range 3/2 � δ � 2. However, the
value of δ obtained from the original network was generally
known to be δ � 2 [16–18]. If the effect of loops in networks is
strong enough, then the tree approximation would not be valid
any more. Thus, to investigate the effect of loops, additional
links are added to the critical tree. As the number of additional
links is increased, the structure of the modified critical tree
with loops approaches that of a random network. In Fig. 5
we compare P (B)’s measured on the modified critical trees.
Theoretically, δ = 3/2 in the exact critical tree [19]. However,
when a small number of links are added to the critical tree,
P (B) is drastically changed and exponentially decays, which
corresponds to δ = ∞ (see in Fig. 5). This result may explain
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FIG. 5. (Color online) Plots of P (B) measured from the modified
critical tree with additional links. The density of additional links is
changed from 0% to 10%. Here the density of additional links is
defined as the ratio of the number of additional links to the number of
nodes (N = 105). The solid line represents δ = 1.5. The inset shows
P (B) measured from the modified supercritical tree with additional
links. The density of additional links is changed from 0% to 100%.
The solid line represents δ = 2.0, and the dashed line denotes δ = 2.2.

physically why δ = ∞ in the random networks [16,17]. On
the other hand, the effect of additional links in the exact

supercritical tree is relatively weak. When a considerably large
number of additional links are added to the supercritical tree,
P (B) still satisfies the power-law equation (1), and δ is close
to δ = 2.0 but slightly deviates from δ = 2.0 (see the inset of
Fig. 5). This also may explain why δ � 2 in SF networks with
γ < 3 [16,17].

In summary, we study the transport property in complex
networks through the scaling behavior of P (B) on two different
transport backbones, MST and IIPC. From the numerical
analyses, it is found that P (B) measured on the transport
backbones scales as P (B) ∼ B−δ . The obtained values of δ

on the transport backbones are classified into two different
categories, δ � 1.6 and δ � 2.0. From the relation between
BC and the branch size in tree structures, it is shown that
δ � 1.6 in critical MSTs and δ � 2.0 in supercritical MSTs.
This result clearly shows that the known value δ � 1.25 in
IIPC [6] was underestimated due to the strong finite-size effect.
We also find that the degree-degree correlation in the original
networks does not affect the scaling behavior of P (B) on the
transport backbones. Finally, we provide a possible origin of
δ � 2.0 in various original networks.
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