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Bond-site duality and nature of the explosive-percolation phase transition
on a two-dimensional lattice
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To establish the bond-site duality of explosive percolations in two dimensions, the site and bond explosive-
percolation models are carefully defined on a square lattice. By studying the cluster distribution function and
the behavior of the second largest cluster, it is shown that the duality in which the transition is discontinuous
exists for the pairs of the site model and the corresponding bond model which relatively enhances the intrabond
occupation. In contrast the intrabond-suppressed models which have no corresponding site models undergo a
continuous transition and satisfy the normal scaling ansatz as ordinary percolation.

DOI: 10.1103/PhysRevE.86.051126 PACS number(s): 64.60.ah, 05.70.Fh, 64.60.Bd, 64.60.De

I. INTRODUCTION

Recently, the Achlioptas process (AP) [1], which was
suggested to show a supposedly first order transition on
the complete graph, triggered intensive studies on explosive
percolations [2–7]. However subsequent studies have proved
that the transition in the AP on the complete graph is
continuous [4–7]. We have also shown that the AP on the
Bethe lattice shows a continuous transition [8]. Therefore the
transition in the original AP is physically established to be
continuous in the mean-field level or in high dimensions.

Until now studies on the AP have been done mainly on the
complete graph. Even though there are some studies on the
AP in two dimensions (2D) [3,7,9–12], the transition nature
in lower dimensions is still not fully understood. For example,
the bond percolation under the AP with a product rule was
first argued to show a discontinuous transition [3,9]. However,
based on the measurement of the largest cluster distribution,
Grassberger et al. [7] argued that the bond percolation with
the same product rule in 2D undergoes continuous transition
[7]. The site percolation under the AP with a product rule
in 2D has been proved to undergo a discontinuous transition
based on a detailed analysis of cluster size distribution and
hysteresis [11]. In contrast, Bastas et al. argued that the site
percolation under the AP with a sum rule in 2D undergoes
continuous transition based on the finite-size scaling analysis
with relatively small system sizes [12]. Those controversies
also show that we cannot simply exclude the possibility that the
transition nature of the AP in the mean-field limit is different
from that in lower-dimensional systems, such as the well-
studied Potts model [13].

Such controversies [3,7,9,11,12] also imply that there
does not seem to exist a bond-site duality among explosive-
percolation models on 2D lattices, unlike ordinary percolation
[14,15]. Here bond-site duality means that a bond percolation
model has the same transition nature or belongs to the
same universality class as the corresponding site percolation
model except for the properties depending on the details
of the models, such as transition probability pc. Moreover,
if the transition is truly discontinuous, then determination
of critical exponents from finite-size scaling analysis as in
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Ref. [12] has no physical meaning, as we already addressed in
Ref. [11]. Thus, resolving such controversies by establishing
the bond-site duality in 2D is theoretically very important and
interesting.

The controversies should come from ambiguities in the def-
initions of explosive-percolation models on lattices. Therefore
it is very important to make clear definitions of models with
various growth rules for the AP. There can be six kinds of
models on a 2D square lattice. Among them, two pairs are
bond models. One pair consists of the bond models which
physically enhance the occupation of intracluster bonds. The
other pair consists of bond models which relatively suppress
the occupation of intrabonds.

In site percolation, there cannot be a distinction between
interbonds and intrabonds in a cluster because the occupation
of any empty site always increases the size of the cluster. So
there is no ambiguity in the definition of site models as in bond
models. As we shall see, the intrabond-enhanced models and
the corresponding site models show the bond-site duality in
which the transition is discontinuous. In contrast the intrabond-
suppressed models show a continuous transition. Physically,
there should be no site model corresponding to such intrabond-
suppressed models.

II. MODELS

There are two fundamental percolation models on lattices
[14]. One is the site percolation model, and the other is the
bond percolation model. In the site percolation model, there
is no new site occupation which does not change the size of
clusters. Under the AP, two vacant sites A and B are randomly
selected. Let {sAi

} ({sBj
}) be the sizes of nA (nB) clusters

which would be connected by occupying site A (B). In the
square lattice nA (nB) is at most 4. In the site model with a
product rule (SP model) site A is occupied if 1 × ∏nA

i=1 sAi
<

1 × ∏nB

i=1 sBi
. Otherwise, site B is occupied. Similarly, in the

site model with a sum rule (SS model) site A is occupied if
(1 + ∑nA

i=1 sAi
) < (1 + ∑nB

j=1 sBj
).

We define four bond percolation models under AP. The first
two unoccupied bonds a and b are selected randomly. If bond a

is an interbond, then it connects two different clusters of sizes
sa1 and sa2. Then under a product rule product ξa for bond a

is clearly defined as ξa ≡ sa1 × sa2 without any ambiguity. If
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the bond is an intrabond, it internally connects two sites in the
same cluster. Then ξa can be defined in two different ways.
One is ξa ≡ sa1 × 1 [bond product type 1 (BP1) model]. The
other is ξa ≡ sa1 × sa1 [bond product type 2 (BP2) model].
The product ξb for bond b is similarly defined. Bond a will
be occupied if ξa < ξb. Otherwise, bond b will be occupied.
Therefore the two bond product models, BP1 and BP2, come
from the ambiguity in defining the product for the selected
intrabond. Similarly, we can define two kinds of bond models
with a sum rule. The sum σa for interbond a is defined clearly
as σa ≡ sa1 + sa2. In contrast σa for intrabond a can also
be defined in two-different ways: σa ≡ sa1 + 0 [bond sum
type 1 (BS1) model] or σa ≡ sa1 + sa1 [bond sum type 2 (BS2)
model]. Then bond a will be occupied if σa < σb.

The physical meaning of the models is that type 1 models
(BP1 and BS1) relatively enhance the intrabond occupation,
whereas type 2 models (BP2 and BS2) suppress the intrabond
occupation. Thus if bond-site duality exists, it should be
between type 1 bond models and site models. As we shall
see, the duality exists for the pair of BP1 and SP models
and the pair of BS1 and SS models. BP2 and BS2 have no
corresponding site models for the duality.

Until now, only the BP2 model has been studied for the
explosive bond percolation model [3,7,9]. In Ref. [9] the BP2
model was argued to show a discontinuous transition, whereas
in Ref. [7] the same model was argued to undergo a continuous
transition. The BP1, BS1, and BS2 models have not been
studied. Both SP and SS have been studied as explosive site
percolation models. The SP model [11] has been proved to
show a discontinuous transition, whereas the SS model [12]
was argued to show a continuous transition based on numerical
studies of relatively small systems.

In the following sections, based on more precise simulations
with larger system sizes, we will show the existence of the
duality between bond and site percolation AP models, as well
as the characterization of the transition nature of each model.
For this purpose, we use L = 512–8192, and the data are
averaged over 106 independent runs.

III. CLUSTER SIZE DISTRIBUTION

To understand the transition nature of the percolation
physically, the cluster size distribution should be understood
first. The cluster size distribution Ps(p) at an occupation
probability p of a bond (or site) is the probability that
an occupied site belongs to a cluster which has s sites. It
has been shown that Ps(p) provides an excellent method to
determine pc as well as the transition nature for an ordinary
percolation (OP) [14] and explosive percolations [5,11]. Thus,
we first investigate Ps(p) for each model to obtain pc and the
transition nature physically. When p < pc, Ps for OP decays
exponentially as s increases. This means that the probability
of finding a large cluster vanishes exponentially. On the other
hand, when p > pc, there exists a macroscopically large
cluster (LC), and Ps for finite s also decays exponentially
with a peak for the LC. At p = pc it is well known that Ps

satisfies a power law, Ps(pc) ∼ s−δ , with δ � 1.055 for OP.
In contrast, Ps for the SP model in Fig. 1(a) is completely

different from that for OP, as shown in Ref. [11]. When p < pc,
Ps for the SP model has a stable hump in the tail as p → p−

c

FIG. 1. (Color online) Plots of Ps(p) against s for various models.
Open symbols denote Ps for the largest cluster on the lattice with
linear size L. (a) SP model at p = 0.7723(7) (≈pc). Insets: p = 0.75
(<pc; top inset) and p = 0.78 (>pc; bottom inset). The line with
δ = 0.95 indicates the relation Ps ∼ s−0.95. (b) The BP1 model at
p = 0.6937(8) (≈pc). Insets: p = 0.67 (<pc; top inset) and p = 0.70
(>pc; bottom inset). The line is the same as in (a). (c) The BS1
model at p = 0.5979(4) (≈pc). Insets: p = 0.590 (<pc; upper inset)
and p = 0.605 (>pc; bottom inset). The line denotes the relation
Ps ∼ s−1.5. (d) The SS model at p = 0.6916(5) (≈pc). Insets: Ps

at p = 0.685 (<pc; top inset) and p = 0.695 (>pc; bottom inset).
The line is the same as in (c). (e) The BP2 model at p = 0.5266(1)
(≈pc). Insets: p = 0.5250 (<pc; top inset) and p = 0.5270 (>pc;
bottom inset). The line denotes the relation Ps ∼ s−1.02. (f) The BS2
model at p = 0.5270(1) (≈pc). Insets: p = 0.5250 (<pc; top inset)
and p = 0.5275 (>pc; bottom inset). The line is the same as in (e).

[5,11]. The behavior of the hump for the SP model has been
studied in detail in Ref. [11]. On the other hand, at p � pc,
Ps for a LC starts to become detached from the continuous
distribution of Ps for finite s, which satisfies Ps ∼ s−δ with
δ = 0.95(1) (<1) [16]. Such power-law behavior for finite s is
observed for sufficiently large p (>pc) [see the bottom inset
in Fig. 1(a)] [11]. Based on this typical behavior of Ps(p),
we determined pc for the SP model [11]. Since the hump
contribution for p < pc does not depend on the lattice size
L and δ < 1 at pc, there should be many stable large (but
still microscopic) clusters before transition, which strongly
indicates a discontinuous transition for the SP model [11]. To
determine pc and find the transition nature for other models,
we now analyze Ps as in Ref. [11].

In Fig. 1(b) we display Ps(p) for the BP1 model. The data
for p < pc in the top inset in Fig. 1(b) clearly shows that the
hump in Ps(p < pc) does not depend on L as for the SP model
in Fig. 1(a). At p � pc, Ps for LC starts to become detached
from the continuous distribution of Ps , as shown in the main
plot of Fig. 1(b). From the best fit of the data for finite s, we
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obtain Ps ∼ sδ with δ � 0.95(1) (<1). For p > pc we find that
Ps for finite s still satisfies the power law with δ < 1 (see the
bottom inset). These behaviors of Ps(p) for the BP1 model
exactly coincide with that for the SP model, which is known
to undergo discontinuous transition [11]. The only difference
between the BP1 model and the SP model is in the value of
pc: pc � 0.6937(8) for the BP1 model and pc � 0.7723(7) for
the SP model. The coincidence of Ps between the BP1 model
and the SP model physically means that there is a bond-site
duality under the AP with the product rule if the bond model
enhances the intrabond occupation.

Figures 1(c) and 1(d) show Ps for the BS1 and SS models.
By assuming the relation Ps ∼ sδ only for small s at p � pc,
we obtain δ � 1.5 for the BS1 and SS models. However,
as depicted in Figs. 1(c) and 1(d), Ps for the BS1 and SS
models seems to substantially deviate from the power law
due to a main contribution from the hump distribution for
large s. Even for the value of pc at which Ps for LC starts to
become detached from the seemingly power-law-like regime,
the hump still exists. The contribution of the hump distribution
part to

∑L2

s P (s) = p for site percolation [or
∑L2

s=1 P (s) = 1
for bond percolation] even at p = pc is more than 90% [17].
This means that the contribution of the power-law-like regime
for small clusters to

∑
s P (s) is trivial. This result implies the

absence of the singular behavior, Ps(p) ∼ s−δ for s → ∞ at
pc, which is the intrinsic property of the continuous transition.
Moreover in both BS and SS models the hump distribution
for p < pc does not depend on the lattice size L (see the top
insets). This anomalous behavior suggests that there exists a
type of powder keg [18] in the BS1 and SS models, unlike in
the fully connected networks [6]. In addition, the existence of
the hump distribution even for p > pc (see the bottom insets)
implies the existence of multiple stable macroscopic clusters
for p � pc in the BS1 and SS models. Furthermore, Ps for
the BS1 model [Fig. 1(c)] is nearly identical to Ps for the SS
model [Fig. 1(d)] as in the case for the BP1 and SP models.
The coincidence of Ps between the BS1 and SS models except
for the value of pc also implies that there is bond-site duality
under the AP with the sum rule if the bond model enhances
the intrabond occupation.

In Figs. 1(e) and 1(f) we display Ps for the BP2 and BS2
models. Ps for the BP2 and BS2 models is physically different
from Ps for the BP1 and BS1 models. Even though Ps for
the BP2 and BS2 models has a hump in the tail when p < pc

(top inset), this hump vanishes in the limit L → ∞, and Ps

at pc shows the power-law singularity Ps(p) ∼ s−δ with δ =
1.02(1) > 1. As we increase p further to p > pc, Ps for finite
s decays exponentially as in OP (see the bottom insets for
p > pc). This Ps behavior is physically the same as that in
OP. As for OP, Ps or ns (≡Ps/s) at pc for the percolation with
continuous transition satisfies the scaling relation [14]

Ps = s−δf (s/L1/σν)[ns = s−τ f (s/L1/σν)], (1)

where δ = τ − 1 and ν is the correlation length critical
exponent. As shown in Figs. 2(a) and 2(b), Ps (ns) for both
the BP2 and BS2 models satisfies scaling relation (1) with
δ = 1.02 (τ = 2.02) and νσ = 0.51 very well. Ps in Figs. 1(e),
1(f), 2(a), and 2(b) strongly suggests that both the BS2 and
BP2 models show continuous transition. Our estimation of

FIG. 2. (Color online) (a) Scaling collapse for relation (1) of the
BP2 model and (b) the collapse of the BS2 model. The exponents in
(a) and (b) are δ = 1.02 and νσ = 0.51. Inset: scaling collapse for
OP with δ = 1.05 and νσ = 0.53.

pc = 0.5266(1) for the BP2 model is nearly the same as
those in Refs. [7,9], even though the two references were
contradictory to each other in transition nature.

IV. FINITE-SIZE SCALING ANALYSIS FOR THE BP2
AND BS2 MODELS

From τ and σ obtained from Eq. (1), one can calculate the
critical exponents β, γ , and ν, which must be identical to the
values evaluated from the finite-size scaling (FSS) properties
of the average-size S(p,L) of the finite clusters and the
order parameter P∞(p,L) if the transition is truly continuous.
From S(p,L) for the BS2 model obtained from the numerical
simulations with L = 512–4096 and the relation pmax(L) =
pc + bL−1/ν , where pmax(L) is the p at which S(p,L) is
maximal [14], we obtain ν = 1.00(1) and pc = 0.5270(1) for
the BS2 model. From the relation for the maximal value of
S(p,L), Smax ∼ Lγ/ν [14] and the data obtained for S we obtain
γ /ν = 1.90(2). Thus S(p,L) for the BS2 model satisfies the
FSS ansatz [14]

S(p,L) = Lγ/νf ((p − pc)L1/ν) (2)

very well with ν = 1.00(1) and pc = 0.5270(1), as shown
in Fig. 3(a). P∞(p,L) for the BS2 model satisfies the FSS
ansatz [14]

P∞(p,L) = L−β/νg((p − pc)L1/ν) (3)

very well with β/ν = 0.04(1) [see Fig. 3(b)]. Since γ and
β are related to τ and σ as γ = (3 − τ )/σ and β = (τ −
2)/σ [14], ν, γ , and β obtained from the FSS ansatz are
consistent with τ and σ obtained from Eq. (1) for the BS2

FIG. 3. (Color online) Scaling plots of (a) S(p,L) and (b)
PLC(p,L) for the BS2 model. The insets shows the original data
for S(p,L) in (a) and PLC(p,L) in (b).

051126-3



WOOSIK CHOI, SOON-HYUNG YOOK, AND YUP KIM PHYSICAL REVIEW E 86, 051126 (2012)

TABLE I. Summary of the transition natures for the six possible models.

Model Type When a is an internal bond Transition nature Duality or universality

SP site product not applicable discontinuous dual to BP1
BP1 bond product ξa = sa1 × 1 discontinuous dual to SP
SS site sum not applicable discontinuous dual to BS1
BS1 bond sum σa = sa1 + 0 discontinuous dual to SS
BP2 bond product ξa = sa1 × sa1 continuous same universality class as BS2
BS2 bond sum σa = sa1 + sa1 continuous same universality class as BP2

model. The obtained exponents are τ = 2.02(1),σ = 0.51(1),
ν = 1.00(1),γ = 1.90(2), and β = 0.04(1). For the BP2
model we obtain exponents and scaling relations identical to
those for the BS2 model.

V. BEHAVIOR OF THE SECOND LARGEST CLUSTER

The discontinuous transition is characterized by the exis-
tence of metastable states. The metastable states in percolation
transition generally originate from the coexistence of multiple
macroscopic clusters [19–21]. To study multiple macroscopic
clusters, we now focus on P2(p,L), for which a randomly
chosen occupied site belongs to the second largest cluster.
If the transition is discontinuous, then P2 approaches a
nonzero value at p � pc in the limit L → ∞. On the other
hand, when the transition is continuous, the largest cluster
grows by gradually adding small clusters, and P2 at p � pc

should decrease to zero in the thermodynamic limit. For the
sake of comparison, we first measure P2 for ordinary bond
percolation (OBP). As shown in Fig. 4(a), p at which P2 is
maximal, p2 max, approaches the known value of pc = 1/2 as L

increases. Furthermore the maximal value P2(p2 max) decreases
as L increases. These behaviors of P2(p,L) clearly show the
absence of multiple macroscopic clusters in OBP for p � pc

in the limit L → ∞, and the transition becomes continuous.
In Fig. 4(b) we show P2(p,L) for the SP and BP1 models.

Here we also see the bond-site duality for the BP1 and SP

FIG. 4. (Color online) (a) Plot of P2(p,L) against p (a) for ordi-
nary bond percolation, (b) for the SP model (inset: the BP1 model),
(c) for the SS model (inset: the BS1 model), and (d) for the BS2
model (inset: the BP2 model).

models. Like P2 in OBP, p2 max for the BP1 and SP models
approaches the estimated pc from Figs. 1(a) and 1(b) as L

increases. However, in contrast to OBP, P2(p2 max) for both
models does not decrease and remains at a nearly constant
value as L increases. This behavior clearly shows that P2

for both models does not vanish at p � pc in the limit
L → ∞, which provides strong evidence for the discontinuous
transition.

In Fig. 4(c) we display P2(p,L) for the BS1 and SS models.
As can be seen from Fig. 4(c), there also exists bond-site
duality for the BS1 and SS models. As shown in Fig. 4(c), P2

for both the BS1 and SS models manifests anomalous behavior.
Unlike OBP, p2 max for both models hardly varies as L increases
and is very close to the estimated pc from Figs. 1(c) and
1(d) regardless of L. Furthermore P2(p2 max) for the SS model
remains at a nearly constant value or increases slightly as L

increases. These results for the BS1 and SS models physically
mean that there exists a stable macroscopic second largest
cluster even at pc in the thermodynamic limit, and the transition
should be discontinuous.

In contrast, P2 for the BP2 and BS2 models in Fig. 4(d)
is physically very similar to that for OBP in Fig. 4(a). p2 max

for the BP2 and BS2 models approaches the estimated pc

as L increases. P2(p2 max) for the BS2 model decreases as L

increases like that for OBP, which indicates that P2 vanishes
at p � pc in the thermodynamic limit. Thus, the transition
becomes continuous for both the BP2 and BS2 models, as
expected from the Ps(p) data. The transition natures for the
six models are summarized in Table I.

VI. SUMMARY AND DISCUSSIONS

In this paper we exactly defined the explosive lattice
percolation models on the square lattice. By studying Ps and P2

for the models, we observed the bond-site duality in the pair of
SP and BP1 models and in the pair of SS and BS1 models. The
duality means a discontinuous transition. In contrast two bond
models, the BP2 and BS2 models, which relatively suppress the
intrabond occupation, undergo continuous transition, which
satisfies the normal scaling behavior like Eqs. (1), (2), and (3).
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[19] N. A. M. Araújo and H. J. Herrmann, Phys. Rev. Lett. 105,
035701 (2010).

[20] K. J. Schrenk, A. Felder, S. Deflorin, N. A. M. Araújo,
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