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Explosive site percolation with a product rule
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We study the site percolation under Achlioptas process with a product rule in a two-dimensional square lattice.
From the measurement of the cluster size distribution Ps , we find that Ps has a very robust power-law regime
followed by a stable hump near the transition threshold. Based on the careful analysis on the Ps distribution, we
show that the transition should be discontinuous. The existence of the hysteresis loop in order parameter also
verifies that the transition is discontinuous in two dimensions. Moreover, we also show that the transition nature
from the product rule is not the same as that from a sum rule in two dimensions.
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The percolation transition describing the emergence of
large-scale connectivity in lattice systems or complex networks
has been extensively studied in statistical mechanics and
related fields due to its possible applications to various phe-
nomena such as sol-gel transition and polymerization, resistor
networks, and epidemic spreading [1]. When the occupation
probability of node (site) is lower than a certain threshold pc,
all the clusters are microscopic. As the occupation probability
increases, the macroscopically connected cluster emerges.
Such transition in the ordinary percolation is continuous [1].

On the other hand, there have been several attempts to
find a percolation model which undergoes a discontinuous
transition. The discontinuous percolation transition can be
found in the modeling of magnetic systems with significant
competition between exchange and crystal-field interactions
[2,3]. A similar phenomenon has been found in financial
systems [4], in which two equally probable phases exist. Other
examples of the discontinuous transition in percolation are the
formation of infinite cluster under a central force [5] and the
cascade of failures in interdependent networks [6].

Recently, Achlioptas et al. [7] suggested a simple process in
which the growth of large clusters is systematically suppressed
and the process is usually called an Achlioptas process (AP).
Based on the analysis of transition interval it was argued that
the percolation transition under AP is explosive and discon-
tinuous. Several variants of models have been investigated
to understand the general properties and conditions which
cause such nontrivial discontinuous transition [8–11]. Some
examples of such nontrivial transition has been found in
nanotube based systems [11], protein homology networks [12],
and community formation [13].

However, more recent studies on the percolation tran-
sition under APs reveal several evidences which strongly
suggest that the transition can be continuous. For example,
da Costa et al. [14] argued that the transition in the complete
graph (CG) is continuous, even though the order parameter
exponent is very small (β � 0.056). From the measurement
of the cluster size distribution Lee et al. [15] argued that the
transition in CG is continuous. Riordan and Warnke [16] also
analytically showed that the product rule on bond percolation
leads to a continuous transition in CG. Grassberger et al. [17]
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also argued that the transition, even in the low-dimensional
systems, can be continuous based on a measurement of the
order parameter distribution.

Since most of the studies on the criticality of the AP
process are restricted to the infinite dimensional systems, it
is still not clear whether or not AP also produces a continuous
transition in lower dimensional systems. For example, in the
bond percolation under AP in a two-dimensional (2D) square
lattice, the product rule was argued to produce a discontinuous
transition based on a finite-size scaling [8,18]. In contrast
Grassberger et al. [17] argued that transition of the 2D AP bond
percolation is still continuous. We therefore cannot exclude the
possibility that the transition nature of the AP in the mean-field
limit can be different from that in lower-dimensional systems,
like the Potts model [19]. Moreover, based on the measurement
of hysteresis [20], a sum rule for the 2D site percolation
possibly makes the transition continuous in the thermodynamic
limit. This indicates that under the AP-like processes the bond
percolation and site percolation may have different transition
natures in the 2D lattice. In the ordinary percolation, bond and
site percolations are known to belong to the same universality
class [1]. In contrast, the results in Refs. [8,18,20] show the
possibility that under AP the bond percolation with a product
rule and the site percolation with a sum rule do not belong
to the same universality class in two dimensions. Therefore
validity for the duality between bonds and site percolation
under AP in low dimension is one of the very important open
questions. And it is also theoretically important and interesting
to investigate whether or not in a low-dimensional system the
product rule and the sum rule belong to the same universality
class. In order to achieve this purpose, we investigate the site
percolation under AP with a product rule and show that AP
with the product rule produces a clear discontinuous transition
in a 2D lattice. For this we carefully analyze the cluster size
distribution and hysteresis.

AP in 2D site percolation is defined as follows: (I) We
select two sites α and β at random. (II) Let {sα1 ,sα2 , . . . ,sαn

}
({sβ1 ,sβ2 , . . . ,sβm

}) be the sizes of clusters which form into a
new big cluster with the size

∑n
k=1 sαk

+ 1 (
∑m

k=1 sβk
+ 1) by

occupying the site α (β). Here the cluster size is defined by
the number of sites in the cluster. Then calculate the products

πα =
n∏

i=1

sαi
and πβ =

m∏

j=1

sβj
. (1)
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(III) If πα � πβ (πα � πβ) then site β (α) remains vacant. This
rule is generally called the product rule (PR). Processes (II)
and (III) prefer the connection between small clusters, which
suppresses the growth of a large cluster. If the product in
Eq. (1) is replaced by summation, then the rule is called a sum
rule. Since we use a 2D square lattice, n(m) in Eq. (1) is at most
4, while n (m) for bond percolation is always 2. Furthermore,
the increase of the dimension leads to an increase in n (m),
thus the merging of small clusters is not always favored in
higher-dimensional systems.

To understand the percolation transition physically to a
deeper level, the properties of the cluster size distribution
should be the first one to understand [1,15,21]. The cluster
size distribution Ps(p) at a site occupation probability p is
normally defined by the probability that a randomly selected
site belongs to a cluster which has s sites (s cluster). For
ordinary percolation, it is well known that Ps(pc) satisfies a
power-law relation [1],

Ps(pc) ∼ s−δ, (2)

with δ � 1.05. Since, as we shall show, the percolation
properties under AP depend on the history of how the clusters
are grown, we measure Ps(p) by filling sites from the vacant
lattice or increasing p. In Fig. 1 Ps(p)’s for 2D site percolation
under AP with product rule (2DSAP) are displayed. Ps in Fig. 1
shows an anomalously unique behavior compared to that of the
ordinary percolation (OP) [1] and that of the AP percolation
on the complete graph (APCG), which was argued to undergo
the continuous phase transition [15].

When p < pc, Ps for 2DSAP has a hump in the tail as p

approaches to pc [21]. In this regime, Ps does not depend on L

or N (=L × L) as shown in Fig. 1(a). In OP, Ps normally
decays exponentially as s gets larger in this regime. For
the detailed comparison to those of OP and APCG, let us
call s at which the hump is maximal sH . In OP we cannot
identify sH . In APCG sH and P (sH ) were argued to satisfy the
scaling behavior, sH � Nx and P (SH ) � N−y with x > 0 and

FIG. 1. (Color online) (a) Plot of Ps for p = 0.75 or p < pc. The
data for L = 1024 are denoted by black squares and those for L =
2048 are denoted by red circles. (b) Plot of Ps for p = 0.8 or p > pc.
The solid line represents the relation Ps ∼ s−δ with δ � 0.90(2). The
data points marked by “×” represent the Ps for macroscopically large
clusters or the largest cluster. (c) The same plot for p = 0.77 or near
the transition threshold. (d) Plot of Ps for p = 0.765 and p = 0.770
on the lattice with L = 2048.

y > 0 [15]. Therefore in APCG the hump has the negligible
contribution and Ps satisfies the same scaling form as Eq. (2)
in the limit N → ∞. This Ps behavior in APCG is believed
to be one of the signals for the continuous transition as in OP.
In contrast sH and P (sH ) of 2DSAP do not depend on L or
sH � const and P (sH ) � const as L(N ) gets larger. We have
numerically checked this behavior for N = 216,218,220,222.
This behavior for 2DSAP means that there should be many
considerably large stable microscopic s clusters with s � sH

before transition, which indicates the unstable or sudden
appearance of the macroscopic cluster by connecting these
clusters when p increases.

Even when p > pc, Ps for 2DSAP has a unique behavior
as shown in Fig. 1(b). Except Ps for the macroscopically
large cluster, Ps for microscopically finite clusters for p > pc

still satisfies the same power law Ps = As−δ with the same
exponent δ as Ps(pc) or δ = 0.90(3), which we will explain
with the data in Fig. 1(c). The difference between Ps(p > pc)
and Ps(pc) is in A and the tail part for finite clusters. As
p becomes larger than pc, A decreases and the length of
tail becomes shorter compared to Ps at pc. The power-law
behavior is very robust, because it maintains for nearly four
decades as shown in Fig. 1(b) before appearing finite-size
effects. Moreover, the power-law behavior for p > pc is
nearly independent of L as for p < pc [see Fig. 1(b)]. This
power-law behavior for the finite clusters has been confirmed
even for large p up to p = 0.9. In contrast Ps of microscopic
clusters for p > pc in OP and APCG exponentially decays.
In 2DSAP the product rule makes the macroscopic cluster
absorb relatively smaller clusters when p gets large in the
regime p > pc. Therefore the larger microscopic clusters
cannot easily disappear. The sustainability of such metastable
clusters seems to be the origin of the power law of Ps for
p > pc. As we shall see, the hysteresis of 2DSAP is consistent
with the power law for p > pc because of such metastable
states.

The phase transition for 2DSAP naturally occurs at p,
which divides the two regimes of Ps described by Figs. 1(a)
and 1(b). The transition threshold pc for 2DSAP is estimated
from the data sets as in Figs. 1(c) and 1(d) by identifying the p

at which the hump disappears [22]. As shown in Figs. 1(c) and
in 1(d) at p = 0.770, Ps for the macroscopically large cluster
starts to be detached from the continuous distribution of Ps

for microscopic clusters. This detachment behavior seems to
be independent of L(N ) as shown in Fig. 1(c). As shown
in Fig. 1(d), this detachment behavior barely occurs and the
humplike tail still exists for p = 0.765. We have scrutinized
Ps between 0.765 < p < 0.770, but the sharp discrimination
between the humplike behavior and the detachment cannot be
made. Such complex behavior mixing the hump and Ps for
the macroscopically large clusters for p � pc seems to be a
unique behavior of 2DSAP. Therefore the best estimation of
pc from the numerical data of Ps is pc = 0.768(3). At p � pc,
Ps satisfies the power law Ps = As−δ with δ = 0.90(2) very
well. Again this power law Ps = As−0.9 is very robust and
holds for more than four decades. The result δ = 0.9 also
provides a very important clue to understand the transition
nature of 2DSAP. Since Ps is a probability, Ps should
satisfy the normalization condition

∑
s Ps = p. However, the

summation
∑∞

s Ps diverges if δ < 1. Therefore there should
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be a cutoff sc in the upper limit as
∑sc

s P (s) = p. In the limit
N → ∞, sc/N → 0. Thus there should be a discontinuous
jump to produce a macroscopic cluster in the limit N → ∞.
The physical origin of the discontinuous transition should
come from the merge of s clusters with s � sh to form the
macroscopic cluster when p gets larger to be p = pc.

One of the most generally accepted and simplest methods
to verify whether the observed transition is discontinuous or
not is the measurement of the hysteresis [23]. The hysteresis
measurement for the explosive percolation has also been
emphasized in Refs. [11,20]. If the transition is discontinuous,
then the route of changes in the order parameter PLC during
the process of filling sites from the vacant lattice or increasing
p would be different from that for the process of deleting
sites from the fully occupied lattice or decreasing p. The order
parameter PLC is defined by the probability that a site belongs
to the largest cluster [1,8]:

PLC = NLC

N
. (3)

Here, NLC is the number of sites in the largest cluster. In
Fig. 2(a), we compare the measured PLC’s along the process
of increasing p (solid lines) and along the process of decreasing
p from N = 212 to N = 220. For the decreasing process, we
slightly modify rule (III) to easily break the larger clusters
into smaller ones [11], since rules (II) and (III) suppress the
formation of a large cluster; i.e., if πα � πβ then we delete
the site α. With this modified rule we find that there exists a
hysteresis for various L as shown in Fig. 2(a).

Now the remaining question is whether the hysteresis
robustly remains in the L → ∞ limit. For the systematic
analysis, we show the dependence of area A(L) enclosed by
PLC(L) for the increasing and decreasing processes on L.
If the system undergoes a continuous transition, then A(L)

FIG. 2. (Color online) (a) Plot of PLC(p) for the process of
increasing p (solid line) and that for the process of decreasing p

(dashed line). L varies from 64 (left most line) to 1024 (right most
line). (b) Plot of the area A(L) enclosed by PLC .

FIG. 3. (a) Plot of PLC(L) measured at pc against L. The solid
line represents the relation P (L) ∼ L−B with B = 0.012. Inset: Plot
of PLC(L) in semilog scale. The solid line represents the relation
P (L) ∼ − log L. (b) Plot of Smax(L) against L. The solid line denotes
Smax ∼ LC with C = 1.98.

should vanish in the limit L → ∞. However, our data clearly
show that A(L) increases as L increases or, at least, seems to
saturate to a nonzero value unlike the sum rule [20] in which
A(L) → 0 as L → ∞. This shows that 2DSAP undergoes a
discontinuous transition. And in a 2D lattice, the product rule
makes a completely different transition nature from that of the
sum rule [20]. This hysteretic property of 2DSAP should be
from the sustainability of the metastably larger clusters, which
is consistent with the analysis of Ps in Fig. 1.

Since we do not know the physically corresponding formula
to Hamiltonian or free energy for 2DSAP and there exists
the nontrivial hysteretic property, it might be physically
nonsensical to discuss the finite-size scaling. However for the
purpose of comparison to other works on explosive percolation
[8–10], we now present the finite-size analysis around pc =
0.768(3), which is the percolation transition probability for
the p-increasing process. From the data in Fig. 2(a), PLC(L)
at the pc is estimated as shown in Fig. 3(a). PLC(L) seems to
satisfy the relation P (L) ∼ L−B with B = 0.011(2), where
conventionally B corresponds to β/ν. This value of B is
very close to zero. Thus in the inset of Fig. 3(a) we also
fit the data to the relation P (L) ∼ − log L, which corresponds
to the case B → 0. Since we cannot exclude the possibility
B = 0 or β = 0, the possibility for PLC(L → ∞) at pc to have
discontinuous jump cannot be excluded. We also measure the
mean cluster size, defined by

S(p,L) =
∑′

s sPs∑′
s Ps

. (4)

∑′
s represents the summation over all s except the largest one.

S(p,L)’s maximal value Smax(L) is displayed in Fig. 3(b).
Again we fit the data to the conventional scaling relation
Smax(L) ∼ L−C , and we obtain C = 1.98(1), where C cor-
responds to conventional γ /ν.

In summary, we study the site percolation under AP with
a product rule in a 2D lattice. From the measurement of
Ps(p), we find that Ps(p) has a very stable hump when
p < pc. This indicates that below pc a large number of
stable s clusters with s � sH exist but their sizes are still
microscopic. The similar behaviors near pc were reported in
other discontinuous percolation models [24]. As p approaches
pc, Ps(p) has a very robust power-law regime followed by
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the hump. Since the obtained value of the exponent δ for
the power-law regime in the vicinity of pc is less than
unity, there should be a cutoff sc in the possible cluster size
for p � pc unlike OP [1]. Thus to generate a macroscopic
cluster there should be a discontinuous jump in the limit
L → ∞ and the transition becomes discontinuous. The non-
vanishing hysteresis in PLC also verifies that the transition is

discontinuous. This result clearly shows that the percolation
transition caused by the product rule in a 2D square lattice is
discontinuous.

This work was supported by National Research Foundation
of Korea (NRF) Grant funded by the Korean Government
(MEST) (Grant Nos. 2009-0073939 and 2011-0015257).

[1] D. Stauffer and A. Aharony, Introduction to Percolation Theory,
2nd ed. (Taylor & Francis, London and New York, 1994).

[2] N. H. Andersen, P. E. Lindelof, H. Smith, O. Splittorff, and
O. Vogt, Phys. Rev. Lett. 37, 46 (1976).

[3] J. Chalupa, P. L. Leath, and G. R. Reich, J. Phys. C 12, L31
(1979).

[4] Y. Kim, H.-J. Kim, and S.-H. Yook, Phys. Rev. E 78, 036115
(2008).

[5] C. Moukarzel, P. M. Duxbury, and P. L. Leath, Phys. Rev. Lett.
78, 1480 (1997).

[6] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
Nature (London) 464, 1025 (2010).

[7] D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323,
1453 (2009).

[8] R. M. Ziff, Phys. Rev. Lett. 103, 045701 (2009); Phys. Rev. E
82, 051105 (2010).

[9] Y. S. Cho, J. S. Kim, J. Park, B. Kahng, and D. Kim, Phys. Rev.
Lett. 103, 135702 (2009).

[10] F. Radicchi and S. Fortunato, Phys. Rev. Lett. 103, 168701
(2009); Phys. Rev. E 81, 036110 (2010).

[11] Y. Kim, Y. K. Yun, and S.-H. Yook, Phys. Rev. E 82, 061105
(2010).

[12] H. D. Rozenfeld, L. K. Gallos, and H. A. Makse, Eur. Phys. J.
B 75, 305 (2010).
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