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The effect of shortcuts on the task completion landscape in parallel discrete-event simulation (PDES) is
investigated. The morphology of the task completion landscape in PDES is known to be described well by
the Langevin-type equation for nonequillibrium interface growth phenomena, such as the Kardar-Parisi-Zhang
equation. From the numerical simulations, we find that the root-mean-squared fluctuation of task completion
landscape, W (t,N ), scales as W (t → ∞,N ) ∼ N when the number of shortcuts, �, is finite. Here N is the number
of nodes. This behavior can be understood from the mean-field type argument with effective defects when � is
finite. We also study the behavior of W (t,N ) when � increases as N increases and provide a criterion to design
an optimal topology to achieve a better synchronizability in PDES.
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I. INTRODUCTION

During the past few years, many studies of complex
networks have focused on the dynamic processes taking place
on given network topologies. Among such studies, synchro-
nization phenomena observed in various natural and artificial
systems have been attracted many researchers in various fields
ranging from physics to biology and sociology [1–3]. On
networks, each individual element represented by a node adjust
its state through the interactions with its local neighbors. Thus
understanding the effect of the interaction topology between
individuals on the synchronization is very important to uncover
various complex behaviors in such systems. Especially, due to
its theoretical and practical importance, the efficient method
to find an optimal topology which gives the best synchro-
nizability has been widely investigated. Applications of the
corresponding models range from physics [3], biology [4],
distributed computing [2], and consensus formation [5]. In
those systems the local state variables are assumed to have
finite number of possible values. As the system evolves in time,
the values of the local state variables change synchronously or
asynchronously depending on the dynamics of the system.

Recently, the synchronization of the parallel discrete-
event simulations (PDES) has been studied on small-world
networks [2]. Examples of PDES applications include dynamic
channel allocation in cell phone networks, models of the
disease spreading, battle-field simulation, and dynamic phe-
nomena in highly anisotropic magnetic systems [2]. Here the
discrete events are call arrivals, infections, troop movements,
and changes of the orientation of the local magnetic moments,
respectively. As the number of processing elements (PEs)
increases, the scalability in the synchronization becomes
important. In the PDES scheme, the scalar field hi is assigned
to each node (or site) i which describes the time it takes to finish
a job or the amount of the work that has to be accomplished. If
we interpret hi as the height of interface in the nonequilibrium
roughening phenomena, then the synchronization can be ana-
lyzed by investigating the average roughness of the interface.
Based on this interpretation, the dynamics and fluctuations of
task completion landscape, {hi}, [2,6] have been approximated
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by the Edwards-Wilkinson (EW) [7] or Kardar-Parisi-Zhang
(KPZ) [8] equations for dynamic roughening phenomena. Like
many other synchronization problems, the complex structure
of the underlying interaction networks are known to strongly
affect the fluctuations of task completion landscape even for a
linear model which belongs to EW universality class [9]. More
recently, the morphological properties of innovation spreading
were investigated using a simple stochastic model [5]. In
this model the interplay between the underlying topology
and avalanche become very crucial for the morphological
transition. The dynamic rule of the innovation spreading
model is very close to that of restricted solid-on-solid (RSOS)
model with avalanches [10]. When the noise is not quenched,
RSOS model with avalanche belongs to the KPZ universality
class [11]. Therefore, it is theoretically also interesting to study
the effect of the underlying topology on the morphological
transition of the model belongs to the KPZ universality class.

II. CONTINUUM EQUATION

Using the coarse-graining procedure, the time evolution
of state variable hi for each PE was shown to be well
approximated by the KPZ equation when there is synchro-
nization/communication between neighboring PEs [2,6],

∂h(x,t)

∂t
= ν∇2h + λ (∇h)2 + η(x,t). (1)

Here η(x,t) is Gaussian white noise that satisfies the relation

〈η(x,t)〉 = 0,〈
η(x,t)η(x′,t ′)

〉 = 2Dδd (x − x′)δ(t − t ′). (2)

We already showed that the diversity of technological level
also can be described by the concepts developed in the studies
on kinetic surface roughening [11]. In this study we use
the same method to analyze the synchronizability in PDES
scheme as suggested in Ref. [2]. The synchronizability in
PDES scheme can be measured by the root-mean-square of
the task completion landscape for N PEs, which corresponds
to the interface width, W (t,N ), defined as

W (t,N ) =
(

1

N

N∑
i=1

[hi(t) − h̄(t)]2

) 1
2

. (3)
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Here h̄(t) stands for the average task completion level at
time t ,

h̄(t) = 1

N

N∑
i=1

hi(t). (4)

W (N,t) normally satisfies the finite-size scaling ansatz [12,13]

W (t,N ) ∼ Nαf

(
t

Nz

)
, (5)

where the function f (x) scales as f (x) ∼ xβ for x 	 1 and
f (x) → const. for x 
 1, and the dynamic exponent z satisfies
the relation z = α/β.

III. MODEL AND UNDERLYING TOPOLOGY

In order to study the interplay between synchronization
and interaction topology in the PDES scheme, we consider
Sneppen’s B model [10] without quenched noise because the
model belongs to the KPZ universality class. The model is
originally defined on a one-dimensional (1d) ring with periodic
boundary condition as follows: (i) Place N PEs at each node
(or site). (ii) Starting from an initially flat task completion
landscape (hi(t = 0) = 0, ∀i), select a node i at random. (iii)
Increase the task completion level of i by unity, i.e., hi →
hi + 1. (iv) Then the neighboring sites are adjusted upward by
unity until all slopes satisfy |hi − hi−1| � 1, for all i (restricted
solid-on-solid (RSOS) condition).

As shown in Ref. [5] the underlying topology crucially
affects the diversity of technological level, which corresponds
to the synchronizability in PDES. Moreover, the internet-
worked structures of computers are known to be characterized
by the small-world networks [14–16] in which the diameter
of network scales as ln N . Thus, it is natural to investigate
the synchronizability in PDES on small-world networks.
Therefore, the study on the interplay between underlying
topology and synchronizability in PDES is very important
not only theoretically but also practically. For this purpose,
we extend the underlying topology to small-world networks
by randomly or regularly adding � shortcuts to the 1d

structure [15,16] and study the dependence of W (t,N ) on �.

IV. NUMERICAL RESULTS

A. W (t,N) for finite number of shortcuts

When there is no shortcut, the model belongs to the KPZ
universality class, whose scaling exponents are known as
β = 1/3 and α = 1/2 on a 1d substrate. In Fig. 1 we display
W (t,N ) when we randomly add � shortcuts to the 1d structure
[(a) � = 1 and (b) � = 10, respectively]. For both cases, we find
that β ≈ 1/3 when t < 100. Then β increases abruptly and we
obtain β ≈ 0.9 for � = 1 and β ≈ 0.7 for � = 10. This indi-
cates that when t < 100 the correlation length is much smaller
than the average distance between two neighboring shortcuts.
Therefore, the morphological property of task completion
landscape is simply the same with that on 1d substrate. As
a result the β for early time is identical with that of KPZ value
β = 1/3. However, if t becomes large (in these examples,
t > 100) then the effect of shortcuts is turned on. As shown in
the data in Figs. 1(a) and 1(b), the value of β for relatively large

FIG. 1. (Color online) Plot of W (t,N ) when (a) � = 1 and (b) � =
10. N varies from 256 (bottom) to 8192 (top). Solid lines represent
(a) β ≈ 0.35 and (b) β ≈ 0.36. The dashed lines correspond to (a)
β ≈ 0.9 and (b) β ≈ 0.7. Insets show the W (N ) when the system
is in the steady state. The lines represent the relation W (N ) ∼ Nα .
From the data we obtain (a) α = 0.92 and (b) α = 0.84.

t increases as N increases. Thus we expect that β for large t

and N eventually approaches to 1. We also display the behavior
of W (t → ∞,N ) for � = 1 and � = 10 in each inset. Using
Eq. (5) we obtain α ≈ 0.92 for � = 1 and α ≈ 0.84 for � = 10.
These value of β’s and α’s are quite close to β = α = 1 which
are expected when there is a strong point defect [17,18].

B. Morphology and height-height correlation function

For a more systematic approach, we place shortcuts with
equal spacing as shown schematically in Fig. 2(a). Thus,
the addition of � shortcuts divides the 1d lattice of node N

into 2� segments and there are N/2� nodes in each segment.
To investigate whether the shortcuts induce effective defects,
we first take snapshots of the morphologies for N = 8192.
Figures 2(b) and 2(c) show typical examples of morphologies
for � = 1 and � = 3 when W (t,N ) is in a steady state.
In these examples, the pairs of nodes connected by short-
cuts are (0,N/2) for � = 1 and (0,N/2), (N/6,4N/6), and
(2N/6,5N/6) for � = 3. In Figs. 2(b) and 2(c) the locations of
shortcuts are depicted by down/up triangles. The morphology
clearly shows that the h’s at the nodes connected to a shortcut
grow much faster than those at the nodes without shortcuts. As
a result, the nodes at the midpoints between two neighboring
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(a)

FIG. 2. (Color online) (a) Schematic diagram for the shortcut
locations for � = 3. The solid line denotes 1d underlying structure.
The dashed lines represent the additional shortcut. In this example,
� = 3. The � shortcuts divide the 1d ring into 2� segments. Each
segment contains N/2� nodes. Morphologies when the system is
in a steady state for (b) � = 1 and (c) � = 3. Down (up) triangles
represents the location of shortcuts for � = 1 (� = 3). (d) Plot of C(r)
for various � when N = 8192. Top curve corresponds to � = 1 and
bottom curve represents the data for � = 10.

shortcuts play a role of effective defects at which the growth of
h is slow compared to those with shortcuts. For a more detailed
analysis we measure the height-height correlation function
[see Fig. 2(d)]. The height-height correlation function between
two points separated by a distance r , C(r), is defined as

C(x0,r,t) = 〈|h(x0 + r,t) − h(x0,t)|〉 . (6)

Here we fix x0 = 0 and the 〈· · ·〉 represents the average over
realizations. The data in Fig. 2(d) clearly show that C(r)
increases until r = N/4� which corresponds to the half of
the distance between two nearest shortcuts. This coincides
with the location of the nearest effective defects from x0.
Then C(r) remains at almost a constant value for N/4� <

r < (N/2) − (N/4�). As we further increase r , C(r) decreases
and finally becomes zero at r = N/2. This result indicates that
C(r) increases until r reaches the effective defect located at
r = N/4�. However, due to the defect, C(r) cannot further
increase for N/4� < r < (N/2) − (N/4�).

FIG. 3. (Color online) Red (gray) dashed line represents the mor-
phology for � = 3. Black lines denote the approximated morphology
by successive triangles.

C. Mean-field argument for W (t → ∞,N; �) when � is fixed

When the number of shortcuts is fixed or �/N → 0 as
N → ∞, we expect W (t → ∞,N )  N as in Fig. 1. We now
want to explain the behavior of W (t → ∞,N )  N by a mean-
field type argument. Based on the measurement of W (t,N ) for
fixed � and morphology, we find that the shortcuts induce
defects. Due to the induced defects, the morphology can be
approximated by successive triangles as shown in Fig. 3(a). As
for the measurement in Fig. 2, we assume that the distances
between two nearest shortcuts are same. The length of the
base line of each triangle is given by the distance between the
nearest shortcuts [in Figs. 2(b) and 2(c), the distance between
the nearest triangles]. We also assume that the fluctuation in the
heights of triangles can be ignored. Based on these assumptions
we can approximate morphology by the triangles with the same
base line length and height. Without loss of generality the slope
of triangle is set to be unity. Then the 〈h〉 and

〈
h2

〉
can be easily

obtained as

〈h〉 = 1

N

N∑
i=1

hi = 1

N

(
4�

N/4�∑
i=1

i

)
(7)

and

〈
h2

〉 = 1

N

(
4�

N/4�∑
i=1

i2

)
, (8)

respectively. From Eqs. (3), (7), and (8), W (t → ∞,N ; �)
becomes

W =
√

1

12

(
N2

16�2
− 1

)1/2

. (9)

Thus, when � is fixed, W (t → ∞,N ; �) scales as W ∼ N

which shows a good agreement with the results obtained from
Fig. 1. Note that Eq. (9) is valid only for 4� � N . Since
there are N/2� nodes between two neighboring shortcuts,
this condition implies that there should be at least one node
between two neighboring shortcuts which plays a role of
effective defect.

D. W (t → ∞,N; �) when N is fixed

More recently, EW equation on SW networks was studied
and was shown to have anomalous scaling with � when N

is fixed [6]. Using the analytic arguments and numerical
simulations, they showed that W (t → ∞,N ; �) scales as
W (t → ∞,N ; �) ∼ �−1/2 when � � N . Thus, it is natural to
ask how the nonlinear term in Eq. (1) affects the anomalous
scaling with � and the synchronizability in PDES. In Fig. 4 we
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FIG. 4. Plot of W (t → ∞,N ; �) in a steady state when N is fixed.
The solid line represents the relation W ∼ �−0.56 and the dashed line
denotes W ∼ �−0.62.

show the behavior of W (t → ∞,N ; �) of Sneppen’s B model
without quenched noise when N is fixed to be N = 2048,
4096, and 8192. Here we add � shortcuts at random. As shown
in Fig. 4, W (t → ∞,N ; �) also satisfies the power law

W (t → ∞,N ; �) ∼ �−δ, (10)

for � � N . Using the least-squares fit of the data to Eq. (10)
we obtain δ  0.56 for N = 2048 and δ  0.62 for N = 8192
when � < N . This clearly shows that δ increases as we increase
N . Moreover, the obtained value of δ is larger than that for EW
equation. This result indicates that the nonlinear term caused
by the communication between neighboring PEs enhances
the synchronizability. Since the possible maximum value of
� is N (N − 1)/2 − N , it is also important to investigate
the behavior of W (t → ∞,N ; �) when � > N . Even when
� is slightly larger than N , we find that W (t → ∞,N ; �)
significantly deviates from the power law. As � increases
further, the underlying topology becomes identical to fully
connected network. Thus, we expect that W (t → ∞,N ; �)
would converge to some constant value which is close to zero
due to the RSOS condition.

E. W (t → ∞,N; �) when � ∝ Nκ

As shown in Secs. IV A and IV D, when � is finite,
the shortcuts induce effective defects and W (t → ∞,N ; �)
starts to deviate from a power law (10) when � ∼ N . This
implies that when � ∝ Nκ with κ < 1 the shortcuts produce
effective defects and W (t → ∞,N ; �) diverges in the limit
N → ∞. Therefore, investigating the detailed behavior of
W (t → ∞,N ; �) when κ � 1 has practical importance to find
a criterion for an optimal topology in synchronization.

In Fig. 5, we display W (t → ∞,N ; �)’s for randomly
connected � shortcuts when κ = 1. This implies that the
average number of shortcuts per node remains finite in
the limit N → ∞. As shown in the inset of Fig. 5(a),

FIG. 5. Plot of W (t,N ; �) when (a) � = N/64 and (b) � =
N/256. The solid line represents the extrapolation of the data. The
lines intersect the vertical axes at (a) W = 8.7 and (b) W = 23.9,
respectively.

we find that the increment in W (t → ∞,N ; �) decreases
as we increase N . In Figs. 5(a) and 5(b) we plot W (t →
∞,N ; �) against 1/N for � = N/64 and � = N/256. From the
extrapolations of the data we find W (t → ∞,N → ∞; � =
N/64)  8.7 and W (t → ∞,N → ∞; � = N/256)  23.9,

FIG. 6. Plot of W (t → ∞,N ; �) against N . The squares represent
the data for � = N (N − 1)/512 and circles denote the data for
� = N (N − 1)/128. The solid line represents the relation W (t →
∞,N ) ∼ N−0.27 and the dashed line displays the relation W (t →
∞,N ) ∼ N−0.22. For N > �, W (t → ∞,N ) deviates from the power
law for both �’s.
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which are very close to the mean-field expectations based on
Eq. (9) [W (t → ∞,N → ∞; � = N/64)  4.61 and W (t →
∞,N → ∞; � = N/256)  18.47]. This clearly shows that
the roughness of the task completion landscape does not
diverge when � ∝ N in the limit N → ∞.

In Fig. 6 we also measure the W (t → ∞,N ; �) when �

increases as � ∝ N (N − 1)/2 which corresponds to the case
κ = 2 for N 
 1. The � shortcuts are randomly added to the
1d structure. As shown in Fig. 6, we find that W (t → ∞,N ; �)
scales as W (t → ∞,N ; �) ∼ Nα for N > �. From the least-
squares fit of the data to the power law, we obtain α  −0.27
for � = N (N − 1)/512. However, we find that α increases
as we increase �. In this example, we obtain α  −0.22 for
� = N (N − 1)/124 when N > �. Thus, the obtained values of
α when � ∝ N (N − 1) are not universal even though it follows
the power law when N > �. For N < �, W (t → ∞,N ; �)
significantly deviates from the power law. Note that when
κ > 1, � increases much faster than N and the underlying
topology would be identical with the fully connected network
in the limit N → ∞. Therefore, for � > N we expect that
W (t → ∞,N ; �) will converge to a value which is close to zero
as in Fig. 4. Thus, for the most optimal topology to achieve
the best synchronizability in PDES, κ should be larger than 1.

However, as shown in Figs. 4 and 6 the differences in
W (t → ∞,N ; �) for � > N are relatively small compared
to that for � < N . This implies that the effect of additional
shortcuts for � > N becomes less drastic than that for � < N .
Moreover, the data in Fig. 5 indicate that the number of
additional shortcut should be at least proportional to N

to obtain nondiverging W (t → ∞,N → ∞; �). Thus, the
condition, �  O(N ), would play a role of the criterion for an
optimal shortcut number to achieve better synchronizability
from the practical point of view.

V. SUMMARY

In this study, we investigate the effect of the underlying
topology to the synchronizability in PDES. Since the task com-
pletion landscape is known to be well described by the KPZ
equation, we use the Sneppen’s B model without quenched
noise which belongs to the KPZ universality class. To generate
the small-world topology, we randomly or regularly add �

shortcuts to the 1d lattice. From the numerical simulations we
find that the shortcuts produce some effective defects when � is
finite. Using the mean-field like argument with equally spaced
shortcuts, we derive the correct scaling behavior of W (t,N ; �)
for fixed �. When N is fixed, we find that W (t → ∞,N ; �)
scales as W (t → ∞,N ; �) ∼ �−δ for � < N like in EW
equation. However, we find that the obtained δ is larger than
that for EW equation, which indicates that the nonlinear term
caused by communication between neighboring PEs enhances
the synchronizability. We also investigate the behavior of
W (t → ∞,N ; �) when � ∝ Nκ and find that W (t → ∞,N ; �)
does not diverge for κ � 1. Based on our measurements of
W (t → ∞,N ; �), we find that the most optimal topology in
PDES can be obtained when κ > 1 in the limit N → ∞.
However, as a practical condition for � to obtain non diverging
W (t,N ; �), we find that there should be at least one shortcut
per node. We expect that our criterion for synchronizability in
PDES can be easily applied to the designing of networks for
various distributed computing systems.
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