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Using the percolation theory, we study the underlying mechanism in the formation of single-walled nanotube
bundles with uniform diameter. By applying the cluster repulsion process to stick percolation, we find that the
transition becomes explosive. To understand the transition nature, we first investigate the scaling behavior of
transition interval �. By comparing the results with loopless and loop-allowed bond percolations, we find that
the loops crucially affect the scaling behavior of �, and � is not universal. Moreover, the scaling behavior of
� for the present nanostick systems is the same as that for loopless bond percolation. For more systematic
studies on the transition nature, we also measure the changes in order parameter during the stick removal
process and show that there exists a hysteresis. The results more clearly show that the transition of the stick
system with cluster repulsion is discontinuous.
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I. INTRODUCTION

Recent developments of thin film of nanowires, such as
silicon nanowires �1� and carbon nanotubes �2–4�, provide
enormous applications in electronics, optoelectronics, and
sensors. Especially, the studies on the changes in electrical
transport in composites of conducting fibers, such as func-
tional organic materials and nanotubes, have become of
prime importance in designing nanodevices �5–7�. In such
systems, it is well known that the addition of small number
of nanotubes substantially modifies their transport properties
without the modification of mechanical properties �8–13�.
Especially, the transition from an insulator to a conductor in
the composites has been one of the well-known phenomena
in such systems and plays an important role in the nanode-
vice designing. This transition is generally characterized by
using a percolation theory �14�. The emergence of percolat-
ing paths in nanotube composites and understanding their
electrical properties are crucial in designing a better nanode-
vice �5–7�.

In many experimental studies, single-walled nanotubes
�SWNTs� with large aspect ratio have been shown to play an
important role in designing nanoscale devices �2–4�. Such
nanotubes with large aspect ratios can be well approximated
by widthless sticks �5,6�. Therefore, the understanding of the
percolation of a stick system is very important to understand
the underlying mechanism in nanoscale systems. The early
studies on the percolation of fiber or nanotube composites
have been focused on the finding of critical length of nano-
tubes, �c, by which an infinitely connected cluster emerges
when the total number of sticks is fixed �15,16�. The geo-
metrical properties of stick percolation are known to belong
to the same universality class with the ordinary percolation
�OP� �17,18�, while the dynamical exponent can be different
from that of ordinary percolation �19�.

Since the suggestion of Achlioptas et al. of a model which
shows an explosive transition, there have been many

attempts to understand the general properties and conditions
which cause such transition �20–24�. Achlioptas et al. origi-
nally introduced the model for the growth of random net-
works and showed that the order parameter discontinuously
jumps to 1 when the growth probability of large clusters is
suppressed. More recently, Ziff showed that the loopless
bond percolation with Achlioptas’ process �AP� in two di-
mensions �2d� also undergoes such discontinuous transition
�21�. These indicate that the inhibition of the growth of large
clusters produces clusters having almost the same size. An
example of such transition was found in the human protein
homology network �25�.

A more interesting example of such discontinuous transi-
tion is found in the nanotube systems. Laser-vaporized
method �26� and electric-arc technique �27� produce close-
packed SWNTs with uniform diameters. Based on the perco-
lation theory �14�, the bundle size should not be uniform
without the suppression of large bundle growth. Therefore,
the net effective growth mechanism for bundle formation of
SWNTs with uniform diameters can be well approximated by
the suppression of the coagulation between large bundles,
like in the explosive percolation transition. Thus, understand-
ing the growth mechanism which causes clusters of uniform
size is very important to produce SWNT bundles from the
practical point of view. In this paper, therefore, we study the
effect of cluster repulsion of nanotubes and show that the
cluster repulsion in the considered theoretical model causes a
first-order transition by measuring the hysteresis. Moreover,
in the ordinary bond percolation, it is natural to allow the
formation of loops, while the original explosive percolation
model does not allow any loop. As we will show later, the
scaling behavior of transition interval is crucially affected by
loops �20�. By showing that the transition interval in stick
systems can reproduce the same scaling behavior with loop-
less 2d bond percolations �21�, we find that the size of loops
is quite small compared to the entire system size at the tran-
sition threshold in the nanostick systems. Thus, we find that
the nanostick systems can be effectively regarded as the
loopless system with the inhibition of the growth of large
clusters.*syook@khu.ac.kr
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II. EXPLOSIVE PERCOLATION

A. Model

The AP in the nanostick system �5,6� is defined as fol-
lows: �I� We place two sticks � and � at random positions
with random orientations. �II� Let �s�1

,s�2
, . . . ,s�n

�
��s�1

,s�2
, . . . ,s�m

�� be the sizes of clusters which form into a
new big cluster with the size �k=1

n s�k
+1 ��k=1

m s�k
+1� by plac-

ing stick � ���. Here, the cluster size is defined by the num-
ber of sticks in the cluster. Then calculate the products

�� = �
i=1

n

s�i
, �� = �

j=1

m

s�j
. �1�

This rule is generally called product rule. �III� If �����

������� then stick � ��� is removed. Processes �II� and
�III� prefer the connection between small clusters, which
causes the cluster repulsion or suppresses the growth of large
clusters. In the following simulations, we use a two-
dimensional square of linear sizes L=5–40. The length of
each stick, �, is set to �=1 ��L�.

For a qualitative description, we compare the snapshot of
the largest clusters in the OP and that under AP in Fig. 1.
Figures 1�a� and 1�c� show the snapshots when the spanning
cluster emerges, for OP and AP, respectively. Figures 1�b�

and 1�d� show the configurations of the largest cluster when
200 more sticks are added to the configurations in Figs. 1�a�
and 1�c�. The snapshots clearly show that, once the spanning
cluster emerges, the size of the largest cluster under AP
grows much faster than that of OP when the same number of
sticks is added. Therefore, the transition under AP is more
explosive than OP. In Fig. 1�e� we show a schematic for a
definition of a loop. The black sticks in Fig. 1�e� are con-
nected back to themselves, which form a closed loop. As we
shall show, for 2d percolations, the existence of loop affects
the scaling behavior of transition interval. In Fig. 1�f� we
enlarge the dashed square in Fig. 1�a�. This enlarged configu-
ration shows that the size of loops in the largest cluster is
negligibly small compared to L. Thus, the transition becomes
quite similar to the loopless 2d explosive percolation transi-
tion �21�. The effect of the loops will be discussed later in
detail.

B. Order parameter

For a quantitative measurement of the changes in geo-
metrical properties of stick system, we measure the order
parameter. The order parameter P� is defined by the prob-
ability that a stick belongs to a spanning �largest� cluster
�14,18�:

P� =
N�

N
. �2�

Here, N� is the number of sticks in the spanning cluster and
N is the total number of sticks placed in a given square.
Figure 2 shows the comparison of P� between OP and AP
when L=40. The data in Fig. 2 show that the AP delays the
transition as observed in the 2d loopless bond percolation
�21� or in complex networks �20�. Moreover, as shown in the
data, the transition under AP is more abrupt than that of the
OP. This abrupt transition provides evidence that AP causes a
first-order transition.

(a) (b)

(c) (d)

(f)(e)

FIG. 1. �Color online� �a� and �b� show the snapshots of the
largest cluster for OP. �c� and �d� show those for AP. �a� and �c� are
the snapshots at the threshold of percolation transition. �b� and �d�
are the snapshots when 200 sticks are added to �a� and �c�, respec-
tively. The green �light gray� sticks denote those that form the span-
ning �largest� cluster. Red �dark gray� sticks are those in the small
clusters. �e� Schematic diagram for a loop. Black sticks are con-
nected back to themselves which form a closed loop. �f� Enlarged
plot of the dashed square in �a�.

FIG. 2. �Color online� Plot of P� against N when L=40. The
�black� squares represent P� for the OP and the �red� circles denote
P� under AP.
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C. Transition interval: Comparison of stick percolation
with 2d bond percolation

To distinguish the transition property under AP from that
of OP, a new method was suggested in �20�. The main idea of
the suggested method consists of the investigation of the
width of the transition interval. In order to apply the method
to our stick system, we define the minimum number of
sticks, N0, at which P� becomes 1. We also define N1, where
P� equals N0

−1/2, and N2 at which P�=1 /2. Then we define
the width of the transition interval as �=N2−N1. In 2d
loopless bond percolation, � is known to satisfy a power law
� /N0	L−	 both for OP and AP. For OP, 	 is closely
related to the typical cluster mass s� which scales as s�

	
N−Nc
−1/
 �21�. Here, Nc represents the critical stick
number which corresponds to the percolation threshold.
From a simple scaling argument, 	 can be estimated as
	=
 /2=36 /91 for loopless 2d OP �21�. As shown in
Fig. 3�a�, 	 for ordinary stick percolation also agrees very
well with the results in loopless ordinary bond percolation.
On the other hand, the numerical value of 	 for AP is known
as 	�0.68 for a 2d loopless case. The data in Fig. 3�a� also
show that the measured value of 	 for AP agrees very well
with that of the loopless bond percolation under AP �21�.

Since the geometrical properties of continuum percolation
are identical to those of bond �or site� percolation �14,18�,
we consider ordinary bond percolation to study the effect of
loops on the scaling behavior of �. As shown in Fig. 3�b�, we
find that the value of 	 dramatically changes when loops are
allowed. From the data in Fig. 3�b� we obtain 	�0.29 for
ordinary bond percolation. This value is significantly smaller
than that obtained from the ordinary stick percolation or

from the loopless OP �21�. This indicates that the scaling
arguments near the critical point suggested by Ziff �21� seem
to be valid only for the loopless percolation and for our stick
system. Moreover, this implies that our stick system has no
effective loops in the global scale as observed in Fig. 1�f�.
When we apply AP to the lattice system with loops, we find
	�0.43 �see the dashed line in Fig. 3�b��.

For OP �see the squares in Figs. 3�a� and 3�b��, the differ-
ence in 	 between the loopless bond percolation and loop-
allowed bond percolation can be understood from a simple
scaling argument. In contrast to the loopless bond percola-
tion, the existence of loops allows us to connect the sites
inside the same cluster. Thus, more occupied bonds are re-
quired to produce a macroscopically large cluster, and this
increases the percolation threshold; � should be rescaled in a
nontrivial way. It is well known that the clusters at the per-
colation threshold form a ramified fractal �14�. For the loop-
less case, the newly added bond always connects two differ-
ent clusters. The probability to find such bond is proportional
to the surface area of the ramified fractal, i.e., �df 	Ldf �14�.
Here, � is the correlation length. On the other hand, for the
loop-allowed bond percolation, any empty bond can be se-
lected and the probability to find such bond is simply pro-
portional to Ld �14�. Thus, the ratio between the intraconnec-
tion and interconnection probabilities becomes Ld−df. This
implies that the occupation probability of loop-allowed
bond percolation is over estimated by the factor Ld−df

compared to that of the loopless bond percolation.
Therefore, �loopless=�loop-allowedLdf−d. Since df �1.9 for
d=2, 	loopless�	loop-allowed−0.1, which agrees very well with
the obtained 	 in Figs. 3�a� and 3�b�. This clearly shows that
the loops crucially affect the scaling behavior of �. Thus,
when one considers nanostick systems in which the effect of
loops can be ignored, our stick systems can be used as a
model system for further studies.

D. Hysteresis

Note that the measurements of � for stick percolation and
loop-allowed bond percolation show that the 	 is not univer-
sal. The results in Fig. 3 indicate that the behavior of �
strongly depends on geometrical properties. Therefore, the
limiting behavior of � /N0 is not sufficient to distinguish the
explosive percolation from OP. One of the most generally
accepted and the simplest methods to verify whether the ob-
served transition is first order or not is the measurement of
the hysteresis �28,29�. The hysteresis is a history-dependent
property of a system and is usually observed in the first-order
phase transition because of the metastable state. If the tran-
sition is first order then the route of changes in P� during
stick addition process would be different from that for stick
removal process. In Fig. 4, to check the existence of hyster-
esis we compare the measured P�’s when we add the sticks
�black squares� and when we remove the sticks �red circles�
for L=40 and L=10 �see the inset�. For the removal process,
we slightly modify rule �III� to easily break the larger clus-
ters, since rules �II� and �III� suppress the formation of a
large cluster, i.e., if ����� then we remove stick �. With
this modified rule we find that there exists a hysteresis for

FIG. 3. �Color online� � /N0 for various L’s. �a� The �black�
squares represent the data obtained from the ordinary stick perco-
lation. The �red� circles display the data for the stick systems with
AP. The �black� solid line represents the relation � /N0	L0.40 and
the �red� dashed line denotes � /N0	L0.65. �b� � /N0 for lattice
bond percolation, in which the formation of loops is allowed. In the
ordinary bond percolation we obtain � /N0	L0.29 �solid line in �b��.
For AP with loops in the lattice percolation, we obtain
� /N0	L0.43 �dashed line in �b��.
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any L as shown in Fig. 4. This clearly shows that the transi-
tion is first order.

III. SUMMARY

In summary, we study the explosive percolation of nano-
stick system. By imposing AP to the stick percolation we find
that the transition is delayed and becomes more abrupt than

that of OP. From the measurement of � we show that � of
stick percolation with AP satisfies a power law, � /N0	L−	,
as in 2d loopless bond percolation under AP �21�. However,
by investigating � for OP, we find that 	 depends on the
existence of loops; thus, it is not universal. For more system-
atic analysis on the transition nature, we measure P� during
the stick removal process and observe the hysteresis. This
clearly shows that the AP causes a first-order transition.
Moreover, since the formation of nanotube bundles and stick
percolation with AP share the same growth mechanism, i.e.,
suppressing the coagulation of different bundles or clusters,
we expect that the model studied in this paper can provide a
theoretical framework for the future studies on various
physical properties of nanotube bundle formation.
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