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We study the dynamical properties of the propagation of innovation on a two-dimensional lattice, random
network, scale-free network, and Cayley tree. In order to investigate the diversity of technological level, we
study the scaling property of width, W�N , t�, which represents the root mean square of the technological level
of agents. Here, N is the total number of agents. From the numerical simulations, we find that the steady-state
value of W�N , t�, Wsat�N�, scales as Wsat�N��N−1/2 when the system is in a flat ordered phase for d�2. In the
flat ordered phase, most of the agents have the same technological level. On the other hand, when the system
is in a smooth disordered phase, the value of Wsat�N� does not depend on N. These behaviors are completely
different from those observed on a one-dimensional �1D� lattice. By considering the effect of the underlying
topology on the propagation dynamics for d�2, we also provide a mean-field analysis for Wsat�N�, which
agrees very well with the observed behaviors of Wsat�N�. This directly shows that the morphological properties
in order-disorder transition on a 1D lattice is completely different from that on higher dimensions. It also
provides an evidence that the upper critical dimension for the roughening transition of the propagation of
innovation is du=2.
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I. INTRODUCTION

In the past few years, there have been many theoretical
attempts to understand the complex phenomena in various
fields, ranging from physics to biological, social, and eco-
nomical sciences �1,2�. In particular, concepts and methods
developed in nonequilibrium statistical physics have popu-
larly used to explain the observed complex phenomena �3�.
Among these studies, the complex behavior of adoption dy-
namics has been one of the most interesting topics because it
is easily found in various systems. This adoption dynamics
usually exhibits a dynamical behavior which is similar to the
punctuated equilibrium phenomena. The punctuated equilib-
rium behavior is characterized by the intermittent bursts
separating relatively long periods of quiescence �4�. For ex-
ample, in biological systems, a new phenotype or genotype
with high fitness emerges and lurks in the background for a
long time. Then, it suddenly spreads over the whole ecosys-
tem. Similar behavior is also observed in socioeconomic sys-
tems. In socioeconomic systems, a new technology such as
cellular phone is invented and sneaks in the background for a
long time. Then, it suddenly explodes into mass use. It also
has long been recognized that the invention and spreading of
a new opinion or paradigm shows the similar dynamical
properties as the technological developments �5,6�. In our
study, innovations of technologies are regarded as a broad
sense and stand for not only technological devices or tools
but also ideas in social systems, phenotype or genotype in
biological systems, etc.

Recently, a very simple model for innovation propagation
dynamics in a socioeconomic system through the interaction
between agents was studied �7–11�. In this simple model,
once a new technology appears, the agents should decide
whether they adopt it or not. The adoption causes a cost, C,

but it also improves the business performance, levels off the
life quality of each individual, or leads more robust biologi-
cal species. In this approach, the technological evolution has
two main mechanisms: �1� innovation—a new technology
with high fitness emerges as a result of invention; �2�
propagation—under certain conditions, the new technology
gets adopted and spreads over the entire system, resulting in
an overall technological progress. A single tunable param-
eter, C, which is fixed and the same for all agents, determines
the dynamical properties for the propagation. Earlier studies
showed that there exist two different stable phases on a one-
dimensional �1D� lattice: an ordered and a disordered phase
�9�. When C is less than Cth�1.0, the driving process easily
produces avalanches. These avalanches lead to an ordered
phase in which most of the agents have the same technologi-
cal level, and the order parameter becomes greater than 0
when C�Cth. On the other hand, when C�Cth there are
almost no avalanches and the increases of technological lev-
els are mostly caused by random growth, and each agent has
different random technological levels. As a result, the model
is in a disordered phase when C�Cth, where the order pa-
rameter becomes 0. The morphological changes of the model
on a 1D lattice were also studied by Llas et al. �9� using the
concepts of the kinetic surface roughening phenomena �12�.
From the numerical simulations, they showed that the mor-
phology of the technological level for C�Cth becomes
smooth; i.e., the steady-state value of the width does not
depend on the system size �see Sec. III B for more details�.
On the other hand, the morphology of the technological level
is rough when C�Cth. Therefore, the model exhibits a tran-
sition from a smooth ordered phase to a rough disordered
phase as C increases.

The early studies on the interplay between the underlying
topology and the dynamics of the model have been generally
focused on the optimal advance rate of technological level
�10�. The dynamical property of optimal advance rate was
shown to undergo a crossover to a fully connected model �or
mean-field model� when the shortcut density becomes larger*Corresponding author. syook@khu.ac.kr
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than O�1 /N�. Here, N is the number of agents �10�. How-
ever, studies on the morphological properties are mostly re-
stricted to only on a 1D lattice. As shown in �9�, the concepts
of the kinetic surface roughening phenomena provide much
richer information on the morphology of the technological
level. For example, the observed roughening transition indi-
cates that although the system is in the ordered phase, there
is still some diversity among agents on 1D lattice. Moreover,
it is now very well known that the structure of interaction
between each agent generally produces a complex network
and such underlying topology crucially affects the dynamical
properties as mentioned in �10�. Thus, it is very important
and interesting to understand what is the effect of the under-
lying topology on the morphological properties of the tech-
nological level in an innovation-propagation model. There-
fore, in this paper, we study the model of innovation on a
two-dimensional �2D� square lattice and two networks, ran-
dom network and scale-free �SF� network. We also compare
the obtained results with those on Cayley tree. From the
numerical simulations, we find that there still exists an order-
disorder phase transition even for d�2. However, we show
that the kinetic roughening transition is not observed when
d�2. This indicates that the resulting morphological proper-
ties of the technological level in two dimensions and in net-
works are completely different from that in one dimension.
The observed behavior can be explained by mean-field argu-
ment. Combining the results, we conclude that the upper
critical dimension for roughening transition is du=2. Since
the real structure of the interaction between agents involved
in innovation propagation is not the same as a 1D lattice
structure, understanding the dynamical properties of the in-
novation propagation in d�2 and networks is more impor-
tant than those in d=1. Our conclusion provides evidence
that the difference of technological levels caused by the
propagation of innovation is not fluctuation dominant in real
world and can be understood by a mean-field argument.

II. MODEL

A. Innovation propagation

Recently, a model for diffusion of technological innova-
tion on 1D lattice was studied �8–11�. In the simplest version
of the model, a population of N agents lie at each site �or
node� of a 1D lattice with a periodic boundary condition. In
our study we use the 2D lattice and networks for the under-
lying structure. Each agent i is characterized by a real vari-
able hi which stands for the fitness or the technological level
of the agent i. The payoff that an agent receives from pos-
sessing a certain technological level is assumed to be propor-
tional to hi. The technological level evolves by the following
dynamical rules. �i� Innovation process—at each time step t,
a randomly chosen agent i updates its technological level by

hi → hi + �i, �1�

where �i is a random variable. This driving process accounts
for the external pressure that may lead to a spontaneous in-
vention of a new technology. �ii� Upgrading process—all
agents j��i, �i being the set of nearest neighbors of agent i,

upgrade their technological level by imitating i’s technologi-
cal level �hj =hi� if hi−hj �C. Here, C is a constant param-
eter that stands for the cost of an agent j to upgrade their
technology as well as their personal resistance to the change.
�iii� Avalanche process—if any j has decided to upgrade its
level, then let neighbors of j also decide whether to upgrade
or not. This procedure is repeated until no one else wants to
upgrade and results in an avalanche of imitation events. In
the following simulations we use the uniform distribution of
�i in the interval �i� �0,1�. For other distributions of �i,
such as the Poisson distribution, our main results are not
changed.

B. Underlying networks

For the underlying topologies to represent the interaction
between a pair of agents, we consider two types of networks:
random network and SF network. We also consider a 2D
square lattice. For the construction of random network, we
use the Erdös-Rényi �ER� network model. The ER network is
simply generated by connecting each pair of nodes with
probability p �13�. The degree distribution of ER network is
known to satisfy the Poisson distribution which indicates that
the degree distribution is homogeneous. In contrast to ER
network, SF networks show high heterogeneity in the degree
distribution. The degree distribution of the SF network satis-
fies a power law, P�k��k−�. In many systems, such as the
Ising model, the critical behaviors are crucially affected by
the topological heterogeneity �14�. In order to generate the
SF networks with tunable degree exponent, �, we use the
static model suggested by Goh et al. �15�. In this model, a
weight wi= i−� is assigned to each node i �i=1,2 , . . . ,N�,
where 0	��1. By adding a link between unconnected
nodes i and j with probability wiwj / ��n=1

N wn�2, one can ob-
tain a network whose degree distribution satisfies a power
law, P�k��k−�, and � is related to � as �= �1+�� /�. Thus,
by adjusting � we easily obtain a network with any � ��2�.

III. SIMULATION RESULTS

A. Order-disorder transition

In order to study the properties of phase transition, we use
the conventional order parameter defined as

M = Smax/N , �2�

where Smax is the size of the largest cluster in which all
agents have the same hi and N is the number of nodes �or
sites�. Figures 1�a�–1�c� show the changes of stationary value
of M, Mstat against C on each topologies. As shown in Fig. 1,
regardless of the underlying topologies, the model shows the
order-disorder transition as observed on 1D lattices �9�.
However, from the data we find that Cth�4 for 2D square
lattice, ER networks, and SF networks. The obtained values
of Cth’s on 2D lattices or on networks are larger than that
measured on 1D lattices Cth�1 �9�.

B. Diversity of technological level

Since the technological level of each agent can be mapped
into the height of interface, in order to measure the diversity
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of technological level we use the concepts developed in the
studies on kinetic surface roughening �12�. The roughness of
the interface is generally described by the width, W�N , t�,
defined as

W�N,t� = � 1

N
�
i=1

N

�hi�t� − h̄�t��2	1/2

. �3�

Here, h̄�t� stands for the average technological level at time t,

h̄�t� =
1

N
�
i=1

N

hi�t� . �4�

When the interface is self-affine, W�N , t� satisfies the finite-
size scaling ansatz �16,17�

W�N,t� � N�f� t

Nz	 , �5�

where the function f�x� scales as f�x��x
 for x�1 and
f�x�→const, for x�1. The dynamic exponent z satisfies the
relation z=� /
.

On 1D lattices, the value of W�N , t→�
Wsat�N� of the
technological level is known to increase as N increases when
the system is in the rough disordered phase. The diverging
behavior of Wsat�N� as N increases indicates that the mor-
phology of technological level for C�Cth is rough. On the
other hand, Wsat�N� for C�Cth goes to a constant value
which does not depend on N when the system is in the
smooth ordered phase �9�. The N independent value of Wsat
is a generic feature of smooth morphology in roughening
transition. Thus, the transition observed in 1D lattices is
known to be related to the morphological changes from the
smooth ordered phase to the rough disordered phase as C
increases �12�.

Figures 2�a�–2�c� shows the measured W�N , t� on 2D
square lattices, ER networks, and SF networks when the sys-
tem is in the ordered phase. For comparison we also display
W�N , t� measured on Cayley tree in Fig. 2�d� when C�Cth.
In contrast to the smooth ordered phase in 1D systems,
W�N , t� decreases as N increases on 2D square lattice, ER
network, SF network, and Cayley tree. The data in Figs.
2�e�–2�h� show the behavior of Wsat�N� obtained from the

FIG. 1. �Color online� Plot of Mstat against C on �a� 2D lattices,
�b� ER networks, and �c� SF networks.

FIG. 2. �Color online� Plot of W�N , t� for various N on �a� 2D square lattices, �b� ER networks, �c� SF networks with �=2.7, and �d�
Cayley tree when C=0.5. Plot of Wsat�N�
W�N , t→� against N on �e� 2D square lattice, �f� ER networks, �g� SF networks with �=2.7,
and �h� Cayley tree when C=0.5. The solid line represents the relation W�N , t→��N� with �=−0.5. Insets in �e�–�h�: scaling plot of
W�N , t� measured on each underlying structure in order to show the scaling behavior W�N , t�=N−0.5f�t�. Plot of W�N , t� against t /N on �i� 2D
square lattice when C=18, �j� ER networks when C=18, �k� SF networks with �=2.7, and �l� Cayley tree when C=20. The data in �i�–�l�
clearly show that W�N , t�’s for C�Cth scale as W�N , t�= f�t /N�.

MORPHOLOGY OF TECHNOLOGICAL LEVELS IN AN… PHYSICAL REVIEW E 82, 046110 �2010�

046110-3



data in Figs. 2�a�–2�d�. Using the least-squares fit of the data
to Eq. �5�, we obtain �=−0.50�0.01 for 2D square lattices,
�=−0.49�0.01 for ER networks, �=−0.50�0.02 for SF
networks, and �=0.48�0.02 for Cayley trees. In the ordered
phase on 2D lattices and complex networks, W�N , t� scales as

W�N,t� = N�f�t� �� = − 0.5 � 0� �6�

instead of scaling ansatz �5� with ��0 �see also the insets in
Figs. 2�e�–2�h��. The negative value of � indicates that the
difference of the technological levels between agents de-
creases and the morphology becomes �completely� flat in the
limit N→. Thus, the ordered phase on a 2D lattice, net-
works, or Cayley tree is the flat ordered phase. If the system
is in the disordered phase, then W�N , t� saturates to a con-
stant value when t→ �see Figs. 2�i�–2�l�� and satisfies the
scaling W�N , t�= f�t /N�. Thus, in contrast to the results in 1D
lattices, the morphological transition observed in Fig. 2 un-
dergoes from the flat ordered phase to the smooth disordered
phase on d=2 lattice, networks, and Cayley tree.

C. Origin of flattening

The behavior of W�N , t� for d�2 and networks can be
qualitatively understood by the comparison of morphology
and avalanche size distribution. The avalanche size, s, is de-
fined by the number of total updated nodes during an ava-
lanche process. Figure 3�a� shows a morphology before the
update of the selected site �red dot� on the 1D lattice. When
the site is selected to increase the technological level by �,
the successive increases of the technological level of neigh-
boring sites occur until the avalanche reaches the sites j’s
marked by the dashed arrows. The technological levels of the
sites j’s do not satisfy the condition hj −hj�1�C. Thus, the
avalanche stops at the site j �see Fig. 3�b��. As a result, the
sites marked by the dashed arrow play a role of barrier for
the spreading of new technology on one-dimensional struc-
ture, which causes many avalanches of moderate sizes as
shown in Fig. 3�c�. On the other hand, for 2D square lattices,

there exist many routes to bypass such barriers. Therefore, as
shown in Fig. 3�d�, the probability of small avalanches rap-
idly decreases and most of the avalanches have the size of
the systems for d�2, which causes the flat ordered phase in
d�2 instead of the smooth ordered phase in d=1 when C
�Cth. Nearly the same mechanism causes the smooth disor-
dered phase in d�2 instead of the rough disordered phase in
d=1 when C�Cth.

D. Mean-field derivation of Wsat(N) for d�2

Since the diameter of random networks and SF networks
scales as ln N �18�, the random networks and SF networks
are generally regarded as an infinite-dimensional object �19�.
By combining the results obtained from 2D square lattices,
ER networks, SF networks, and Cayley trees, we conclude
that the upper critical dimension of the innovation propaga-
tion model is 2 �i.e., du=2�. Moreover, the observed behavior
of Wsat�N� for d�2 can be explained by the mean-field-like
argument based on the results in Figs. 1 and 3. When the
system is in the flat ordered phase, the existence of detouring
paths for d�2 and the systemwide avalanches leads M→1.
In order to satisfy M→1 in the limit N→, most of the sites
have the same technological level h�t� at time t when the
system is in a steady state. Only a small finite number of
nodes have different technological levels �see Fig. 1�. For
this case, let m be the average number of agents who have

heights h�t�+ �̄ due to the spontaneous innovation, and the

technological levels of other �N−m� nodes be h�t�. Here, �̄
represents the mean additional height of m nodes. With
simple algebra we obtain

h̄�t� = h�t� +
m

N
�̄ , �7�

and Wsat�N� becomes

Wsat�N� = �̄�m

N
	1/2

+ O��m

N
	2/3� . �8�

Therefore, for large N, Wsat�N� scales as Wsat�N��N−1/2 in
the flat ordered phase, which agrees with the results shown in
Figs. 2�e�–2�h�. On the other hand, when C�Cth, each node
has a different level of technology to satisfy M→0. Thus,
the fluctuation of hi�t� becomes relatively larger than that for
C�Cth but still bounded by C. In this case, on the average

hi− h̄ becomes order of �̄ for all i. Thus, when the system is
in the smooth disordered phase, we obtain

Wsat�N�  A�̄ , �9�

where A is a constant. Equation �9� agrees very well with the
results shown in Figs. 2�i�–2�l�.

IV. SUMMARY AND DISCUSSION

In summary we investigate the dynamical properties of
the innovation propagation model for d�2. From the mea-
surement of M we show that the model for the propagation
of innovation shows an order-disorder transition like on 1D

FIG. 3. �Color online� �a� Morphology of the 2D innovation
model before the update �N=1000�. The �red� dot represents a ran-
domly selected site. The sites located under the dashed arrows play
a role of barrier. �b� Morphology after the growth of selected site
and avalanche when the system is in the smooth ordered phase. �c�
Plot of P�s� on 1D lattice for N=10 000 when the system is in the
smooth ordered phase �C=0.5�. �d� Plot of P�s� measured on the 2D
square lattice when the system is in the flat ordered phase �C
=0.5� for N=10 000.
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lattices. However, by measuring W�N , t� we find that there
exists the transition from the flat ordered phase to the smooth
disordered phase for d�2 due to the existence of many de-
touring paths. More specifically, for d�2 we find that
Wsat�N� scales as Wsat�N��N−1/2 when C�Cth and Wsat�N�
saturates to a constant value which does not depend on N. By
combining the measurement of M and the underlying topolo-
gies, we provide a mean-field analysis for Wsat�N� on higher
dimensions and conclude that the upper critical dimension of
the roughening transition of the innovation model is du=2.
This result indicates that the morphological transition in the
model depends only on the dimension of interaction topol-
ogy. Since the interaction topology of real world is known to
be complex networks, which is generally regarded as
infinite-dimensional topology, the propagation of innovation
in real world is expected to follow the mean-field dynamics.
In addition, note that the qualitative behavior of M in d�2 is
not different from that on 1D lattices. However, the measure-

ment of W�N , t� can distinguish the morphological differ-
ences between d=1 and d�2. Therefore, W�N , t� is more
proper quantity than M to study the diversity of the techno-
logical level in real world.
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