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We investigate how the largest synchronized connected component �LSCC� is formed and evolves to achieve
a global synchronization on complex networks using Kuramoto model. In this study we use two different
networks, Erdösi-Rényi network and Barabási-Albert network. From the finite-size scaling analysis, we find
that the scaling exponents for the percolation order parameter and mean cluster size on both networks agree
with the mean-field percolation theory, �=�=1. We also find that the finite-size scaling exponent, �̄, also
agrees with the mean-field percolation result, �̄=3. Moreover, we also show that the cluster size distributions
are identical with the mean-field percolation distribution on both networks. Combining with the analysis for the
merging clusters, we directly show that the LSCC on both networks evolves by merging clusters of various
sizes.
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Recent studies have revealed that the topological proper-
ties of interactions in various systems are well described by
complex networks �1�. These complex networks share some
common properties such as small-world phenomena �2�. The
relationship between the topological properties of interaction
networks and the various dynamical properties, such as the
emergence of collective behavior, has been one of the main
research topics in complex network studies �3,4�.

The emergence of collective synchronized phenomena is
easily found in many diverse branches of science such as
physics, biology, computer science, chemistry, and sociology
�5,6�. Among the many theoretical models to understand the
collective synchronized phenomena, Kuramoto proposed a
simple model of coupled phase oscillators �5�. In the original
Kuramoto model �KM� each oscillator is coupled with all
other oscillators. This global coupling causes a synchroniza-
tion transition. For locally coupled oscillators in
d-dimension, d=2 is generally accepted as the lower critical
dimension for macroscopic entrainment �7�. For 2�d�4,
KM shows a frequency entrainment without phase ordering
�8�. For d�4 merging various clusters plays a key role for
the synchronization transition, and the transition belongs to
the mean-field universality class �8�.

On complex networks, the structure of interaction be-
tween each unit affects the synchronization transition of KM.
Many studies have shown that the small-world feature in-
creases the stability of the synchronized state of KM �9,10�.
However, the synchronization dynamics on complex net-
works has not been fully understood. For example, on scale-
free �SF� networks in which the degree distribution satisfies a
power law, P�k��k−�, the heterogeneity in degree is known
to suppresses the global synchronizability based on the linear
stability analysis �11�. In contrast to the linear stability analy-
sis, mean-field type approaches, such as time averaged ap-
proximation and frequency distribution approximation, pre-
dict that the system is always in the synchronized state for
��3 and show a phase transition when ��3 �12–14�. For

�=3 the numerical simulation �14,15� predicts that KM un-
dergoes a phase transition. Since the synchronization transi-
tion is known to be caused by the formation of the synchro-
nized cluster �8,13�, we study the structural properties of
synchronized clusters of KM in this paper to understand how
the globally synchronized states are achieved.

Recently, the physical route to a global synchronization
was studied on random networks �RNs� and SF networks
with �=3 �16�. Based on the analysis of the size of the larg-
est synchronized connected component �LSCC� and the
number of synchronized connected components, they sug-
gested that many different clusters of synchronized oscilla-
tors merge together to form LSCC in Erdös-Rényi �ER� net-
work as increasing the coupling coefficient �16�. In contrast
to ER network, they claimed that LSCC in SF networks in-
corporates other oscillators one-by-one as the coupling coef-
ficient increases �16�. In this paper based on the analysis of
the percolation transition �17� and direct measurement of the
merged cluster size distribution on complex networks, we
also show that the physical route to a global synchronization
are identical when ��3.

The KM consists of N locally coupled phase oscillators.
The phase of oscillator at node i, 	i, evolves in time accord-
ing to �5�

d	i

dt
= 
i + J�

j=1

N

Aij sin�	 j − 	i� �i = 1,2, . . . ,N� , �1�

where 
i is the natural frequency of oscillator i and Aij rep-
resents the adjacency matrix �Aij =1 if two nodes i and j are
connected and 0 otherwise�. We solve Eq. �1� using the
fourth-order Runge-Kutta method with uniform distribution
of 
i in the interval �−1 /2,1 /2� �16,18�. To construct the
synchronized cluster, we use a coherence parameter �16�

� =
1

2L
�
i=1

N

�
j=1

N

Aij� lim
T→�

1

T
�

tr

tr+T

ei�	i�t�−	j�t��dt� , �2�

where L is the number of edges in the network. Equation �2�
represents the fraction of all possible edges that are synchro-
nized for time interval �tr , tr+T� after the system is relaxed to
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the stable state. From Eq. �2� we define the coherence matrix
as

Dij = Aij� lim
T→�

1

T
�

tr

tr+T

ei�	i�t�−	j�t��dt� . �3�

Here Dij represents the contribution of a pair oscillators i and
j into Eq. �2�. To filter out the matrix we use a threshold c� at
which the fraction of synchronized pair equals �. In this
way, if Dij �c� then two connected oscillators i and j are
considered to be synchronized and belong to the same cluster
�16�. The choice of c� does not affect the main results. This
changes only the critical point, Jc for the percolation transi-
tion.

In the percolation theory on complex networks �17,19�,
the order parameter, P�, is defined by the probability that a
node belongs to a giant cluster. For a given occupation prob-
ability p, P� satisfies a power-law scaling, P���p− pc��,
near the percolation threshold pc. Similarly, the mean cluster
size follows a power law, S�	p− pc	−�. The mean-field ex-
ponents are �=1 and �=1 �17�. The order parameter in the
synchronization transition is closely related to the size of
LSCC at synchronization critical point Jc �13�. Thus, in order
to study the structural properties of synchronized cluster as a
function of J, we use the following ansatz for P� and S �19�

P��J� � �J − Jc��, and S�J� � 	J − Jc	−�. �4�

For finite size of networks with N nodes, P� is assumed to
satisfy the finite-size scaling as

P��J,N� = N−�/�̄f��J − Jc�N1/�̄� . �5�

Here, �̄ is the finite-size scaling exponent and the scaling
function, f�x�, satisfies f�x��x� for x
1 and f�x�=const for
x�1. Similarly, S�J ,N� satisfies a scaling ansatz

S�J,N� = N�/�̄g�	J − Jc	N1/�̄� , �6�

where the scaling function g�x� also has the asymptotic form
g�x��x−� for x
1 and g�x�=const for x�1. According to
the finite-size scaling ansatz, the value of J at which S�J ,N�
has maximum, Smax�Jmax,N�, approaches Jc as �19�

Jmax�N� = Jc + aN−1/�̄, �7�

where a is a constant.
In order to study the effects of the underlying topology we

consider two networks: �1� ER network �20� and �2�
Barabási-Albert �BA� network �21,22�. Each data are aver-
aged over 1000 network realizations. The average degree of
network is fixed to be 
k�=6. In Figs. 1�a� and 1�b� we dis-
play Jmax�N� for various N on both ER and BA networks.
From the best fit of Eq. �7� to the data we obtain Jc
=0.033�0.001 and �̄=3.1�0.1 on ER networks and Jc
=0.017�0.001 and �̄=3.1�0.1 on BA networks. There is a
little subtlety in the value of �̄. Based on the droplet-
excitation argument, �̄ is conjectured as the product of the
mean-field correlation length exponent, �MF and the upper
critical dimension, du, i.e., �̄=du�MF �23�. This conjecture
yields �̄=3 ��MF=1 /2 and du=6�. The numerically estimated
values of �̄ on both networks are very close to that of the
mean-field percolation theory.

Equation �6� indicates that Smax�Jmax,N� grows as

Smax�Jmax,N� � N�/�̄. �8�

In Figs. 1�c� and 1�d� we show Smax�Jmax,N� on ER networks
and BA networks, respectively. From the least square fit of
Eq. �8� to the data we obtain � / �̄=0.32�0.01 on ER net-
works and � / �̄=0.31�0.01 on BA networks. Using the es-
timated �̄ we obtain �=0.99�0.04 for ER networks and
�=0.96�0.04 for BA networks. These values of � are con-
sistent with the mean-field value �=1 within the estimated
errors. Similarly, from Eq. �5� we obtain the relation,

P��Jmax,N� � N−�/�̄. �9�

In Figs. 1�e� and 1�d� we display the measured P��Jmax,N�
for various N. Using Eq. �9� we find � / �̄=0.34�0.02 on ER
networks and � / �̄=0.33�0.02 on BA networks. Thus, we
obtain �=1.05�0.07 and �=1.02�0.07 for ER networks
and BA networks, respectively. The obtained �s also agree
with the mean-field value �=1 within the estimated error.
These critical exponents on both networks show that the for-
mation of the synchronized cluster belongs to the mean-field
percolation universality class, regardless of the underlying
network topology.

In Figs. 2�a� and 2�b� we show the scaling plot of
P��J ,N� in ER networks and BA networks, respectively. The
data in Figs. 2�a� and 2�b� show that P��J ,N� of the synchro-
nized cluster satisfy the relation �5� very well with the ob-
tained Jc, �̄ and � from the data in Fig. 1. We also show a
scaling plot of S�J ,N� for both networks in Figs. 2�c� and

FIG. 1. Plot of Jmax�N� in �a� ER networks and �b� BA networks.
The intercept with Jmax-axis corresponds to Jc. Plot of Smax�Jmax,N�
against N on �c� ER networks and �d� BA networks. The solid lines
represent the relation �8�. �e� and �f� show P��Jmax,N� on ER and
BA networks, respectively. The solid lines stand for Eq. �9�.
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2�d�. Using the obtained Jc, � and �̄, we also verify that
S�J ,N� collapses into a single curve which satisfies the uni-
versal function �6�. Interestingly, the results show that the
percolation transition of the synchronized cluster is not af-
fected by the underlying topology when there is the synchro-
nization transition ���3�.

In order to investigate how LSCC is formed, we first mea-
sure the cluster number, ns�J�=Ns�J� /N �17�, for various val-
ues of J. Here, Ns�J� is the number of clusters of size s when
the coupling strength is J. In our measurement, we include
LSCC in ns. As shown in Fig. 3�a�, ns�J� satisfies the power
law;

ns � s−�, �10�

when J=Jmax�N�. From the data in Fig. 3�a� we obtain �
=2.7�0.3 for both ER and BA networks when J=Jmax�N�.
The obtained � at J=Jmax�N� ��Jc� also agrees well with the
mean-field value �=5 /2 within the estimated error on both
networks. For J�Jc, ns around s�104 in Fig. 3�b� clearly
shows the formation of LSCC on both networks. The value

of � increases as J increases when J�Jc. The obtained � for
both networks are almost the same. For example, Fig. 3�b�
shows the ns when the size of LSCC is approximately 80%
of N. From the best fit with Eq. �10� to the data except for the
data of LSCC, we obtain �=3.7�0.1 for both networks.

From the measurement of the size of LSCC and the num-
ber of synchronized connected components for various val-
ues of J, Gómez-Gardeñes et al. �16� claimed that the route
to achieve a global synchronization on BA network is differ-
ent from that on ER networks when J�Jc. But the analysis
provided by Gómez-Gardeñes et al. is rather indirect. For the
complete understanding on the physical route to the globally
synchronized state, we directly measure the size distribution
of the merged clusters into LSCC. For this purpose, we use
the simulated annealing method �24�. Starting from J=0.01
the systems is relaxed to reach a stationary state in which the
synchronization order parameter, r= �1 /N�	� j=1

N exp�i	 j�	, re-
mains constant. Then, increase J by �J �=0.01�. The final
state for J of the simulation is used as the initial state for J
+�J. The system is again relaxed to reach a stationary state.
By comparing between the two successive stationary states,
we directly measure the size distribution of the merging clus-
ter, P�m�. As shown in Fig. 4, the value of P�m� are almost
identical on both networks when J�Jc. Moreover, the maxi-
mum value of merging cluster, mmax, are the almost same on
both networks when NLSCC�N /2 �see Fig. 4�. The value of
mmax are very small compared to NLSCC. This is natural con-
sequence of percolation transition. As shown in Fig. 3�b�,
most of the nodes belong to the LSCC and the size of non-
LSCC cluster is very small compared to that of LSCC when
J�Jc for both networks. Therefore, only small finite clusters
can be merged into LSCC. The value of P�m� in Fig. 4
clearly shows that the LSCC evolves by merging these finite
small clusters on both networks.

If we assume the power-law distribution, P�m��m−�,
then we obtain �=2.8�0.3 for ER network and �
=2.9�0.3 for BA networks when the coupling coefficient
changes from J=0.05 to J=0.06 �see Fig. 4�a��. This value of
J ensures that the size of LSCC exceeds N /2 in both ER and
BA networks. Since the size of the LSCC, NLSCC, on ER
network is different from that on BA network for the same J
�16�, we also measure P�m� when NLSCCs on both networks
are the same �NLSCC�0.86N�. This value of NLSCC corre-

FIG. 2. Scaling plot of P� on �a� ER networks and �b� BA
networks. Scaling plot of S on �c� ER networks �d� BA networks.

FIG. 3. Plot of ns at �a� J�Jmax�N� �
Jc� and �b� J�Jc when
N=10 000. The solid lines represent �a� �=2.7 and �b� �=3.7.

FIG. 4. �a� Plot of P�m� for J=0.06. The lines represent the
relation P�m��m−� with �=2.8 for ER network �solid line� and �
=2.9 for SF network �dashed line�. �b� Plot of P�m� for NLSCC

�0.86N. Solid lines denote �=3.6.
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sponds to J=0.07 for ER network and J=0.11 for BA net-
work. As shown in Fig. 4�b�, we obtain �=3.6�0.2 on both
ER and BA networks for m�10. When m�10, P�m�
abruptly decays on both networks. From our measurements
we find that P�m� on both networks satisfies P�m��m−�

with the same � when N /2�NLSCC�N. In summary, the
straight lines in Fig. 4 just imply that if we assume the power
law for P�m� then we can also find the same exponents on
both networks. But the more important fact is that the differ-
ence in P�m� on both networks are negligible. Combining the
results shown in Figs. 1–4, we conclude that the underlying

mechanisms to form a globally synchronized cluster on both
networks are identical, in contrast to the results of Gómez-
Gardeñes et al. �16�.
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