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Information search is closely related to the first-passage property of diffusing particle. The physical prop-
erties of diffusing particle is affected by the topological structure of the underlying network. Thus, the interplay
between dynamical process and network topology is important to study information search on complex net-
works. Designing an efficient method has been one of main interests in information search. Both reducing the
network traffic and decreasing the searching time have been two essential factors for designing efficient
method. Here we propose an efficient method based on biased random walks. Numerical simulations show that
the average searching time of the suggested model is more efficient than other well-known models. For a
practical interest, we demonstrate how the suggested model can be applied to the peer-to-peer system.
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The interplay between network topology and dynamical
process has been an important topic in complex network
studies �1–7�. Examples include information search �1–4�,
diffusive particle systems �5�, epidemic spreading �6�, and
coupled oscillators �7�. Among these studies, information
search has attracted many researchers due to its possible ap-
plications in diverse fields ranging from communication net-
works to social networks. Especially, peer-to-peer �P2P� sys-
tem is one of the popular examples of information search. In
P2P systems, the wanted information is located at several
nodes in a network, and nodes exchange the wanted infor-
mation directly with each other. Many studies on the large-
scale topology of P2P networks have uncovered that the dis-
tribution of a node with degree k follows the scale-free �SF�
distribution P�k��k−�, with ��3 �2,8–14�, or highly
skewed fat-tailed distributions �2,11–13,15�. In SF networks,
several nodes have most of degrees or connections. These
nodes are called hubs and many important properties of com-
plex networks are dominated by them �9,14�. Since the per-
formance of P2P protocol is crucially affected by the under-
lying topology �8�, a good P2P protocol should take
advantage of the underlying topology. However, in many
popular P2P protocols, the underlying topology is not imple-
mented. This poorly designed P2P protocols cause very sig-
nificant problems by consuming the bandwidth of the Inter-
net �16,17�.

The two most popular algorithms used in many P2P ap-
plications �18–22� are �1� the flooding-based �FB� query-
packet-forwarding algorithm and �2� the n-random walker
�n-RW� model. The FB algorithm �8� spreads the query
packets to all nodes within a preassigned diameter. Thus, this
algorithm causes significant traffic congestion. In n-RW
model �2,8�, n query packets are generated and take random
walks along the P2P connections. n-RW model can cause
long waiting time because of the dynamical properties of
RWs on complex networks �23�. Specifically, Adamic et al.
suggested a diffusing particle model �1-RW� when the exact
location of the wanted information is unknown in a network

�2�. The searching efficiency of the model of Adamic et al.
is closely related to the first-passage property of diffusing
particle.

Recently, we have studied the survival probability S�t� of
prey particles in diffusive capture process on complex net-
works and successfully applied it to model the P2P system
�4�. We suggested N lions-lamb �NLL� model inspired by
recent discoveries in diffusive capture process �5,24�. In the
NLL model, both the advantage of the underlying structure
and the property of the diffusive capture process are used in
order to improve the performance of information search. Not
only the query packet but also the information packets are
generated. All the generated packets take random walks. The
NLL model has two benefits compared to the other models.
First the amount of traffic is always constant and much less
than the FB algorithm. Second it has much less searching
time than that for n-RW model. However, the average
searching time of the NLL model is still larger than that of
the FB algorithm �4�. In this Brief Report, we introduce a
biased NLL �BNLL� model based on biased random walks.
Using the numerical simulations, we show that the average
searching time of the BNLL model drastically decreases
down to the level of the FB algorithm.

In the BNLL model, each node sends out an information
packet whose main part consists of names of files stored in it
�25�, regardless of the existence of query events. Each of
these packets takes biased random walks along the P2P con-
nections. The probability that a walker at a node i moves to
one of its nearest neighbors j is given by

Pij =
kj

�

�
l��i

kl
�

. �1�

Here, kj is the degree of node j and �i represents the set of i’s
nearest neighbors. The exponent � represents the degree of
bias. For example, if ��0 then the walker prefers to move a
node of large ki. Independently, a randomly chosen node
sends out one query packet to find a specific file. The query
packet also takes the same biased random walks as the infor-
mation packets. Thus, not only the querying packet moves
but also the information of all files moves on the network. If
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the query packet meets an information packet that has the
requested file name in its list, then the query packet is termi-
nated but the information packet continues biased random
walks for the next query.

A specific case, the one lamb and one lion problem has
been studied �26�. In this model, two biased walkers are ini-
tially located at two randomly selected nodes. Then the prob-
ability to meet the walkers at node i of degree ki is

Pi � ki
2��+1�. �2�

Equations �1� and �2� imply that the bias to the larger degree
of node becomes stronger when � increases. Thus, in gen-
eral, there is a strong tendency that the walker �or packet�
prefers to stay around hubs when ��0. As a result the hubs
become strong attractors when ��0. Such effects enhance
the searchability in P2P networks.

In the simulation, we assume nf available files on the
given network. Each node of the network is assumed to have
one randomly chosen file among nf files and sends out an
information packet with the name of the file stored in it, its
internet protocol �IP� address, etc. And a randomly chosen
node sends out a query packet to find one randomly chosen
item among nf files. We consider two possible situations: �1�
nf is fixed for each given network and �2� nf =�N. Here, N is
the number of nodes in a given network.

In order to investigate the effect of underlying topology,
we use two kinds of networks for P2P networks. One is the
theoretical SF network with �=2.4 to generate the virtual
P2P network. For this we use the method suggested by Goh
et al. �27�. To compare the scalability, we use the networks
of various sizes, N=103–106. The other kind is the snapshot
of a real Gnutella topology obtained from Refs. �10,11,15�,
which has 1 074 843 ��106� nodes. The known characteris-
tics of Gnutella network are as what follows: P�k� distribu-
tion of Gnutella follows a power law or is fat tailed. This
implies that there exist hubs. These hubs in the Guntella
network play an important role. For example, it is closely
related to the reachability of a query and also related to the
mean distance to other pairs �15�. Therefore, the dynamical
properties of the searching algorithm can be affected by the
characteristics of these hubs. To extract Gnutella subnet-
works having N=103–105 nodes from the snapshot, we use
random walk sampling method �28�. The subnetwork
sampled by random walk method is known to inherit the
topological properties from the original network. All quanti-
ties measured in the simulations are averaged over ten net-
work realizations and 100 different histories for each net-
work realization.

In Figs. 1 and 2, we show the average searching time �T	
for each model. The searching time T is defined by the time
taken to find the requested information. All packets have
preassigned time-to-live �TTL� counter tTTL, which decreases
by 1 when the packet is forwarded to other node. When
tTTL=0, the packet is removed. We use infinite tTTL in the
measurement of �T	. Since the searching time of the n-RW
model depends on the value of n, we need a criterion for n. If
there are q simultaneous query events, then the traffic of the
n-RW model is qn and that of the BNLL model is N+q.
Here, the network traffic f�t� is defined as the total number of

packets on the network at time t. Note that each query event
in n-RW and BNLL is independent to other query events.
Thus, �T	 does not depend on q, but f�t� generated by each
model is affected by q. When q�N, the resulting f�t� of
n-RW exceeds that of BNLL if n�1. On the other hand, if
q�N then f�t� of n-RW drastically decreases compared to
that of BNLL. Thus, one can increase n of the n-RW model
to have the comparable f�t� with the BNLL model when q
�N. Since the known optimal value of n is 16 �8�, we also
compare �T	 of the 16-RW model with that of the BNLL
model in Figs. 1 and 2, and we find that �T	 for n=16 scales
in the same way with that for n=2. Thus, we choose the

FIG. 1. Log-log plot of the average time �T	 taken to find the
requested information with a fixed value of nf �=500� on SF net-
works with �a� �=2.4 and �b� real Gnutella networks.

FIG. 2. �a� �T	 for nf =�N ��=0.1� on SF networks with �
=2.4. Solid and dotted lines represent �T	�N1.0 and �T	�N0.5, re-
spectively. �b� �T	 for nf =�N ��=0.1� on real Gnutella networks;
�T	 of 2-RW and NLLL models grows faster than the power law. �c�
Plot of the log10��T	BNLL / �T	FB� against N for various � on real
Gnutella networks. The dashed line represents
log10��T	BNLL / �T	FB�=1.
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condition fn-RW�t�= fBNLL�t� when q=N to compare �T	 of
both models under the condition with the same f�t�, so we fix
n=2 in the following simulations. We use the parameters �
=0.5, 1, 2, and 4 to control the bias in the BNLL model.

We display �T	’s for each model when nf =500. As shown
in Fig. 1�a�, �T	 decreases as N increases for the 2-RW, the
NLL, and the BNLL ��=0.5,1� models; while �T	 for the FB
algorithm and the BNLL ��=2,4� model remains almost
constant on SF networks. The �T	BNLL model with �=0.5
decreases much faster than those of the n-RW and the NLL
models as N increases and approaches to �T	FB. When �
increases further ��=1�, �T	BNLL drastically decreases and
becomes slightly less than �T	FB for N�104 on SF networks
�Fig. 1�a��. Moreover, when ��2, �T	BNLL becomes almost
the same as �T	FB for any N. In Fig. 1�b�, we display �T	 for
each model on the real Gnutella �sub�networks. As in the
case of theoretical networks, the �T	BNLL model with �
=0.5 and 1 on Gnutella network decreases faster than the
n-RW and the NLL models. The BNLL model with ��1
shows almost the same efficiency as the FB algorithm in
searching time for large N or N�106. The average searching
times on Gnutella networks also satisfy the inequality

�T	BNLL � �T	FB � �T	NLL � �T	2-RW, �3�

when nf is fixed. Therefore, as � increases, the BNLL model
shows almost the same or better efficiency in searching time
than the FB algorithm on both SF and Gnutella networks.
This can be understood from the dynamical properties of
RWs on complex networks. Since the probability that a RW
visits a node with the degree k is proportional to k �23�, the
probability that a query packet finds a requested file at one
node with degree k is proportional to k in the n-RW model.
And in the NLL model, due to the random walking informa-
tion packets, the probability is proportional to k2 �5�. But in
our BNLL model, the probability that two biased random
walks meet at the same node with degree k is proportional to
k2��+1� �Eq. �2�� �26�. Thus, the hubs in the BNLL model
collect more packets and become stronger attractors than
those in the NLL model as � increases. Therefore, �T	’s of
the 2-RW, the NLL, and the BNLL models decrease but
�T	2-RW− �T	BNLL and �T	NLL− �T	BNLL increase as N in-
creases.

We also measure �T	’s for each model when nf =�N ��
=0.1�. The data in Fig. 2�a� show that �T	2-RW increases al-
most linearly �or �T	�N� with ��1.0� and �T	FB stays
around 3 on the theoretic SF networks. And �T	NLL grows as
�T	NLL�N� with �=0.5 for small N, but � seems to be less
than 0.5 or �T	 becomes saturated to a fixed finite value for
large N ��105� �24�. For the BNLL model, �T	BNLL increases
much slowly than those of the 2-RW and the NLL models.
The increment of �T	BNLL depends on �. As � increases,
�T	BNLL approaches to �T	FB. More specifically, �T	 of each
model satisfies the inequality �T	FB� �T	BNLL� �T	NLL
� �T	2-RW when �=0.5. �T	BNLL with �=1, 2, and 4 drasti-
cally decreases and becomes almost the same as �T	FB �see
Fig. 2�a��.

On the real Gnutella network, we are unable to find a
power-law behavior of �T	 for each model. However,
�T	2-RW− �T	BNLL and �T	NLL− �T	BNLL also increase as N in-

creases. Thus, the searching time of the BNLL model is more
efficient than the 2-RW and the NLL models �see Fig. 2�b��.
As for �T	BNLL on SF networks, the behavior of �T	BNLL
strongly depends on �. As � increases �T	BNLL drastically
decreases and becomes comparable to �T	FB. Figure 2�c�
shows the plot of log10��T	BNLL / �T	FB� against N for various
� on the real Gnutella networks. log10��T	BNLL / �T	FB��1
implies that �T	BNLL has the same order of magnitude as
�T	FB. As shown in Fig. 2�c�, log10��T	BNLL / �T	FB��1 for
��1, and log10��T	BNLL / �T	FB� decreases as � increases.
From Figs. 1 and 2, we show that the inequality �T	BNLL
� �T	NLL� �T	2-RW is always satisfied. Moreover, the BNLL
model shows almost the same as the FB algorithm in search-
ing time depending on �, when the underlying topology has
the high degree of heterogeneity. We also find that there ex-
ists an optimal value of �, above which �T	 does not drasti-
cally decrease as � increases for large N. This optimal value,
�op, depends on the underlying topology and nf. For SF net-
works with �=2.4, we find that �op
1 for both fixed nf and
nf =�N cases. On Gnutella networks, we find that �op
1 for
fixed nf and �op
2 when nf =�N.

Let us discuss the traffic generated by each model. In Fig.
3�a�, we compare f�t� of FB algorithms to that of the BNLL
model on SF networks with N=103 nodes and nf =5. We
assign tTTL=7 for the FB algorithm. In order to prevent the
overflow caused by a large number of packets in the FB
algorithm, we assume that a new query event can occur when
one of the query packets succeed to find the request file. In
this case, the other query packets, which fail to find the re-
quest file, are forwarded until their tTTL’s become 0. In the
FB algorithm with finite tTTL, the traffic generated during
each query event is known to increase exponentially as f�t
= tTTL���k	���k2	− �k	� / �k	�tTTL−1, where �k	 and �k2	 are the
first and the second moments of the network degree distribu-
tion, respectively �4,9�. However, the traffic of the NLL and
the BNLL models is always N+1 for successive query
events. As shown in Fig. 3�a�, the FB algorithm generates
around 500 times more traffic than the BNLL model on the
average �29�. If there are q simultaneous query events, then
the average traffic for the FB algorithm increases by q times
of the average traffic, but it becomes simply q+N for the

FIG. 3. �Color online� �a� Plot of the average traffic �f�t�	
against t. �b� The traffic of FB algorithm measured at each node i,
f�i�. The upper �red� and the lower �green� dashed lines represent
the possible maximum traffic of BNLL and 2-RW models,
respectively.
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NLL and the BNLL models. The traffic of the n-RW model
is qn for q simultaneous query events. If q=N, then the traf-
fic generated by the n-RW model can exceed the traffic of
the BNLL model depending on the value of n. Thus depend-
ing on q the traffic generated by the n-RW model can exceed
the traffic of the BNLL model.

Since the probability that a biased walker visits a node of
degree k follows the Eq. �2�, the hub can have a considerable
amount of traffic. In order to compare the bottleneck traffic
between the FB algorithm and the BNLL model, we measure
the traffic generated by the FB algorithm at each node i, f�i�.

By the definition of the static SF network �SFN� model �27�,
the smaller node index i has the larger k. As shown in Fig.
3�b�, f�i� of the largest hub �i=1� exceeds 5	105, which is
much larger than the possible maximum traffic of the BNLL
model �fmax=1001 for N=103; see the �red� dashed line in
Fig. 3�b��. This huge amount of packets in the largest degree
of node can cause severe traffic congestion in the Internet
when the FB algorithm is applied. The mean-field argument
for the traffic of each model is presented in Ref. �4�.
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