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We study a microscopic model for financial markets on complex networks, motivated by the dynamics of
agents and their structure of interaction. The model consists of interacting agents �spins� with local ferromag-
netic coupling and global antiferromagnetic coupling. In order to incorporate more realistic situations, we also
introduce an external field which changes in time. From numerical simulations, we find that the model shows
two-phase phenomena. When the local ferromagnetic interaction is balanced with the global antiferromagnetic
interaction, the resulting return distribution satisfies a power law having a single peak at zero values of return,
which corresponds to the market equilibrium phase. On the other hand, if local ferromagnetic interaction is
dominant, then the return distribution becomes double peaked at nonzero values of return, which characterizes
the out-of-equilibrium phase. On random networks, the crossover between two phases comes from the com-
petition between two different interactions. However, on scale-free networks, not only the competition between
the different interactions but also the heterogeneity of underlying topology causes the two-phase phenomena.
Possible relationships between the critical phenomena of spin system and the two-phase phenomena are
discussed.
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I. INTRODUCTION

Power-law or fat-tailed distributions observed in many
economic systems �1,2� have attracted many physicists be-
cause of their relevance to critical phenomena in statistical
physics. Especially, empirical studies on logarithmic price
changes �returns� in real markets have found the intermittent
occurrence of large bursts resulting in the power-law tails in
their distributions. Various models have been introduced to
understand the origin of the observed properties in real fi-
nancial markets �2–7�. Among these models, Ising-like spin
systems have been studied by some researchers, due to their
simplicity �5–7�. For example, Chowdhury and Stauffer �5�
introduced a super-spin and time-dependent individual bias
of each agent to show that the return distribution caused by
herding of agents satisfies a power-law scaling. The effects
of the heterogeneity of interaction topology on herding be-
havior is also studied, which is closely related to the fat-
tailed distribution of return �8,9�.

Recently, more realistic models have been introduced
�6–8,10,11�, in which the pool of agents is divided into two
groups: “Fundamentalist” �or “chartist”� and “trend fol-
lower” �or “noise trader”�. The fundamentalists are those
who exactly know the excess demand �difference between
the demand and supply�, and the trend followers are those
who follow the decision of their interacting neighbors. The
coexistence of the fundamentalist and the trend follower con-
tradicts the prevalent “efficient market hypothesis” in eco-
nomics. These models succeeded in reproducing several non-
trivial properties in a real market. For example, Sznajd-
Weron and Weron studied the effects of a single
fundamentalist by using Ising-like ferromagnetic interactions
on two sublattices �7�. Another interesting spin model which

incorporates the competition between the fundamentalist and
trend follower was suggested by Bornholdt �6�. In Born-
holdt’s model, each agent is assumed to have features of both
the fundamentalist and the trend follower. The ferromagnetic
interaction with nearest neighbors is used to stand for the
characteristics of the trend followers. At the same time, each
spin �or agent� interacts with the global magnetization. The
global interaction represents the tendency of the fundamen-
talist by encouraging a spin-flip when the global magnetiza-
tion becomes large. The global interaction depends only on
the magnitude of the magnetization, but not the current state
of each agent. Thus, the global interaction in Bornholdt’s
model implicitly contains the effective time-dependent bias
of each spin, which is similar to that of the Chowdhury and
Stauffer model �5�.

In order to study the origin of the power-law distribution
of the return, we have recently investigated a spin model on
a two-dimensional square lattice based on the microscopic
dynamics of each agent �12�. The model has the explicit
time-dependent global field as well as the competition be-
tween the characteristics of noise trader and the fundamen-
talist. The time-dependent global field represents any internal
or external interferences in the market dynamics. By numeri-
cal simulations, we have shown that the competition between
trend follower and fundamentalist causes two different do-
mains if the temperature is lower than the critical tempera-
ture of Ising model, below which the system is in the ordered
state. When this domain structure is completely destroyed by
the external field and restored, we find large bursts in the
return to make a power-law or fat-tailed distribution of re-
turn.

In this paper, since all the agents in a real market do not
have the same number of interacting partners, we study the
effect of the heterogenous structure of interactions between
each agent on the market dynamics. Moreover, the critical
behavior of the Ising model on complex networks is known*Corresponding author; syook@khu.ac.kr
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to be different from that on regular structures. Especially, on
the scale-free networks �SFN�, in which the degree distribu-
tion follows a power law, P�k��k−� �13–15�, the critical
behavior of Ising model strongly depends on �. For ��3 the
critical temperature, Tc

0, of the simple Ising model goes to
infinity as N→�. On the other hand, for 3���5 the system
shows second-order phase transition but the obtained critical
exponents depend on �. When ��5 the Ising model satisfies
the mean-field expectation. Therefore, it is also theoretically
interesting to study how these complicated critical behavior
of spin models affect the market dynamics. By numerical
simulations we show that the heterogeneity of the underlying
structure causes two-phase phenomena �16�. For the theoret-
ical considerations, we use two network topologies, random
network �RN� �17� and static SFN �15�. The paper is orga-
nized as follows: In Sec. II, we introduce our model. Nu-
merical results and some possible relations between the ob-
served two-phase phenomena and the critical phenomena of
spin system are presented in Sec. III. Finally, the summary
and discussions will be given in Sec. IV.

II. MODEL

We consider N agents placed on each node in a given
network. The state of each agent i is characterized by a two-
state spin variable si�t�� �−1, +1� at time t. Each state cor-
responds to buying �+1� or selling �−1� state. The state of
each agent i at time t+1, si�t+1�, is updated by the heat-bath
dynamics �18� based on the Hamiltonian

H�t� = − �
i�j

N

Jijsi�t�sj�t� + ��M�t� − f�t���
i=1

N

si�t� . �1�

Here, Jij =J��0� if i and j are nearest neighbors �ferromag-
netic interaction�; otherwise, Jij =0. For simplicity, we let the
Boltzmann constant kB and J be unity. This ferromagnetic
interaction represents the tendency that each agent follows
the decision of his cooperating agents �characteristics of the
trend follower�. In the second term, M�t�= �1 /N�� j

Nsj�t� cor-
responds to the excess demand. For ��0, the interaction
becomes antiferromagnetic and stands for the tendency of
the fundamentalist, who exactly knows the excess demand.
The antiferromagnetic interaction reflects the following fact;
if the demand �supply� exceeds the supply �demand�, then
each agent wants to place a selling �buying� order to maxi-
mize his benefit. f�t� denotes a time-dependent external field
which incorporates all internal and external interference in
the market dynamics. In general, the magnitude of this inter-
ference changes in time. Furthermore, large interferences
such as oil shock and subprime mortgage crisis do not have
the same occurrence probability as daily reported rumors.
Thus, at each time step we choose the magnitude of the
external field, 	f�t�	, from the power-law distribution

Pf�	f 	� �
1

	f 	�
, �2�

where � determines the heterogeneity of the distribution. The
sign of f�t� is chosen at random. The unit time step is defined
by the usual Monte Carlo time step.

Before discussing the results on complex networks, let us
briefly define the price and return. For simplicity, we assume
that the evolution of price, p�t�, follows �19�

dp�t�
dt

= cM�t�p�t� , �3�

where c is a scaling factor for price change. For small time
interval �t, we obtain p�t+�t�= p�t� exp�cM�t��t� by as-
suming that the change of M�t� during this interval is negli-
gible. In a discrete time step ��t=1�, p�t+1�
= p�t� exp�cM�t��. Thus, the logarithmic return becomes

R�t� = ln p�t� − ln p�t − 1� = cM�t − 1� . �4�

III. RESULTS

In simulations, we use networks with N=104 nodes. We
find that our main conclusion does not crucially depend on
N.

A. Random networks

RN is generated by connecting each pair of nodes with a
fixed probability � �17�. By adjusting �, we fix the average
degree to be 
k�=4.

If T�Tc
0 or �	 
k�, then the system is always in the dis-

ordered phase, and P�R� trivially depends only on P�f�. Here
Tc

0 means the critical temperature for the simple Ising model
or H with �= f�t�=0 in Eq. �1�. When T=3.0 which is close
to �but smaller than� Tc

0 ��4 for 
k�=4� and ��
k�, the
domainlike structure is formed as a result of the competition
between ferromagnetic and antiferromagnetic interactions.
For these values of parameters, the systems is in the market
equilibrium phase as shown in Figs. 1�a� and 1�b�. Figure
1�a� shows the time evolution of R�t� when �=2.5, �=4, and
T=3.0. Since the average degree of the network is 
k�=4, the
antiferromagnetic interaction becomes comparable with the
ferromagnetic interaction when T=3��Tc

0� and ��4. With
these values of parameters, we find the intermittent occur-
rences of large bursts in R�t�, which are very similar to those
of real market indices �20� and the results on two-
dimensional square lattices �12�.

In Fig. 1�b� we display P�R� for the same set of param-
eters with the data in Fig. 1�a�. In general, P�R� of the real
market has been approximated by a Lévy stable distribution
�2,12,21�:

P�R� 

1



�

0

�

exp�− a	q	��cos�qR�dq . �5�

Here, � and a are the Lévy exponent and scaling factor,
respectively. For large 	R	, Eq. �5� can be written as a power
law,

P�	R	� � 	R	−�1+��. �6�

From the best fit of Eq. �6� to the data in Fig. 1�b�, we find
�=1.5�0.1 for 	R 	 �2. The solid line in Fig. 1�b� represents
Eq. �5� with the obtained ���1.5�. For convenience we use
c=240 on RNs. The other choice of c affects only on a
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without changing �. The result shows that P�R� obtained
from the simulations agrees very well with Eq. �5�. For this
case, the market is in the equilibrium phase in which the
price is determined by nearly the same number of buyers and
sellers �16�. As � increases, Pf�	f 	 � becomes relatively ho-
mogeneous. Thus, the price fluctuations are not correlated
and P�R� becomes Gaussian.

When T is very low and � is small, R�t� does not show
any intermittent bursts �see Fig. 1�c��. Thus, P�R� does not
satisfy the power-law distribution as shown in Fig. 1�d�.
Since the ferromagnetic interaction is always dominant for
this value of T and � ��
k��, the system is always in the
ferromagnetic ordered state when 	f 	 =0. The ferromagnetic
ordered state indicates that there is an imbalance in the num-
ber of buyers and sellers. The imbalanced state is relatively
stable against the change of external field. As a result, R�t�
changes its sign only when 	f�t�	 is large enough. In this case,

the market behavior is governed by buyers for one-half of
the time, and by sellers for the other one-half as shown in
Fig. 1�c�. Accordingly large fluctuations in return emerge.
Therefore, the market is in the out-of-equilibrium phase �16�
in which P�R� is double-peaked at nonzero R �see Fig. 1�d��.
Other results for various values of parameters are summa-
rized in Table I.

When the ferromagnetic and antiferromagnetic interac-
tions are balanced and P�f� has relatively high heterogeneity
���3�, the Lévy stable distribution is obtained for T�Tc

0.
The similar results were reported for the model on two-
dimensional square lattices �12�. The formation of two dif-
ferent domains on a two-dimensional square lattice is easily
verified by taking a snapshot when 	f 	=0 �12�. However,
analyzing the snapshot does not give us any information in
complex networks due to their heterogeneous topologies. In
order to avoid this difficulty, we use the segregation function
�22� for the detailed investigation. The segregation function
of node i in state si is defined as


�si� =
n�si�

ki
, �7�

where n�si� denotes the number of i’s nearest neighbors
which have the same state with i, and ki is the degree of i.
The average segregation function 

� is obtained by averag-
ing 
�si� over all nodes in the network. If all nodes are in the
same state, then 

� becomes 1. If T�Tc

0, then 

�→1 /2 in
the limit N→�. If different domains are formed, then 

�
lies between 1 /2 and 1. When T is very low, 

� is 0.9�1
for ��2 �see Fig. 1�e��. This indicates that the system is in
the ferromagnetic ordered state to make the out-of-
equilibrium phase when T=0.5 and �=1 �see Fig. 1�d��.
When T=3.0 and 
k� /2���2
k�, 

� lies between 0.6–0.8.
In this regime of parameters, the system is in the market
equilibrium phase as shown in Figs. 1�a� and 1�b�.

B. Scale-free networks

The scale-free network �SFN� is the network whose de-
gree distribution satisfies a power law, P�k��k−�. Recent
studies have found that the critical phenomena of the simple
Ising model on SFNs with small ��5 are different from

FIG. 1. �Color online� �a� Time evolution of R�t� on RN and �b�
plot of P�R� when T=3.0 �near Tc

0�, �=4, and �=2.5. The solid line
represents Eq. �5� with �=1.5. �c� Plot of R�t� and �d� P�R� for T
=0.5, �=1, and �=2.5. �e� Segregation function for various T when
f�t�=0.

TABLE I. Market behavior for various values of �, �, and T
��Tc

0� on the random networks. �’s in the table indicate that the
distribution is single peaked at R=0, but it follows neither a power
law �Lévy distribution� nor a Gaussian distribution. For ��2, the
Lévy distribution is not stable.

� T=0.5 T=3.0

2.5 Double peak �

�=1 3.0 Double peak �

3.5 Double peak Gaussian

2.5 Lévy ��=1.9�0.1� Lévy ��=1.5�0.1�
�=4 3.0 Lévy ��=2.8�0.1� Lévy ��=2.3�0.1�

3.5 Gaussian Gaussian
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those of mean-field expectations �23,24�. The critical expo-
nents obtained from the local tree approximation depend on
the degree exponent �. This indicates that the heterogeneity
of the underlying structure affects the critical behavior of the
Ising model. Moreover, many social and economic systems
are known to form various SFNs �25�. Therefore, it has the-
oretical and practical importance to investigate how the het-
erogeneity of the underlying topology affects the market dy-
namics. For this purpose, we use a static model suggested by
Goh et al. �15� to generate SFN with tunable �. The average
degree 
k� is fixed to be 4 for the direct comparison with the
results on RN and two-dimensional lattices �12�. Since the
size N of network does not affect the conclusions, we present
the results only for N=104. In order to demonstrate our re-
sults in an appropriate price scale, we use c=140 when T is
very low and c=70 when T is close to Tc

0. The main conclu-
sions also do not depend on the value of c.

We find that our model on SFNs also shows a two-phase
phenomena. For ��5, we find nearly the same results with
RNs. However, the origin of the observed crossover from
market equilibrium phase to out-of-equilibrium phase is dif-
ferent from that on RNs when ��5. In the following sec-
tions, we discuss the differences in detail for ��5.

C. 3���5

In Fig. 2�a� we show P�R� when �=1 ��
k�� and T
=1.0 on SFN with �=3.5. For these values of � and T the
ferromagnetic interaction becomes dominant as in the case
on RNs and SFNs with ��5. The market is thus in the
out-of-equilibrium phase, and P�R� becomes double peaked
when f�t��0.

At low T or T=1.0, the market is also in the out-of-
equilibrium phase even for ��
k� �see Fig. 2�b��. It indi-
cates that not only the competition between ferromagnetic
and antiferromagnetic interactions but also the heterogeneity
of underlying topology causes the two-phase phenomena.
This results for 3���5 is quite different from that on RNs
and SFNs with ��5, where the market is in the equilibrium
phase for low T and ��
k�. From the numerical simulations,
we find that the system is always in the ferromagnetic or-
dered state up to ��
k� when T�Tc

0, ��5, and 	f 	=0
�which is not shown�. Since the susceptibility of the simple
Ising model decays as ��	Tc

0−T	−1 for 3���5 �23�, this
ferromagnetic ordered state becomes more stable as 	Tc

0−T	
increases. As a result, M�t� or equivalently R�t� changes its
sign only when the occasional strong external field is applied
and the fluctuation in the market becomes large. Thus, the
market is in the out-of-equilibrium phase in which the mar-
ket behavior is governed by buyers for one-half of the time
and by sellers for the other one-half depending on the sign of
the applied external field even for ��
k� �see Fig. 2�b��.
This result is consistent with the previous expectation that
the system is in the out-of-equilibrium phase when the mar-
ket fluctuation or the local noise intensity becomes large
�16�.

When T is close to Tc
0��6� or T=4 and �=1��
k��, the

ferromagnetic interaction is dominant. Moreover, for 3��
�5, 	M	 of simple Ising model increases more rapidly as
	Tc

0−T	 increases than that on RNs or SFNs with ��5 �23�.
This causes a large fluctuations in M�t� or R�t� when 	f�t�	 is
large enough. Thus, the market is still in the out-of-
equilibrium phase �see the case of T=4 and �=1 in Table II�.
But when T is close to Tc

0 �or T=4� and ��
k�, the market is
in the equilibrium phase with single peaked P�R� as shown
in Fig. 2�c�. When T is close to Tc

0 and ��
k�, P�R� be-
comes a Gaussian distribution for large � �see Table II�.

D. 2���3

As shown in Fig. 3�a�, P�R� is double peaked which cor-
responds to the out-of-equilibrium phase when T=1 and �
=4.

Due to the heterogeneity of the underlying networks, the
critical behavior of the Ising model on SFN with ��3 be-
comes completely different from that observed on RN or
SFN with ��3. In this regime, Tc

0→� in the limit N→�

FIG. 2. �Color online� Plot of P�R� on SFN when �=2.5 and
�=3.5 with �a� �=1 and T=1, �b� �=4 and T=1, and �c� �=4 and
T=4 which is relatively close to Tc

0 ��6�. The solid line in �c�
represents Eq. �5� with �=1.9.

TABLE II. Market behaviors for various values of �, �, and T
��Tc

0� on SFNs with 3���5. For ��2 the Lévy distribution is
not stable.

� T=1.0 T=4.0

2.5 Double peak Double peak

�=1 3.0 Double peak Double peak

3.5 Double peak Double peak

2.5 Double peak Lévy ��=1.9�0.1�
�=4 3.0 Double peak Lévy ��=3.4�0.1�

3.5 Double peak Gaussian
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�23� and the susceptibility decreases as ��1 /T. Although Tc
0

for 2���3 diverges, we can determine the Tc
0�N� for the

finite-sized network with the size N. �23�. The small suscep-
tibility near Tc

0�N� and the imbalance in the number of buyers
and sellers cause very stable domains against the change of
external field when 2���3. This stable domain can be dis-
turbed only when the occasional large 	f 	 is applied. In Fig.
3�b� we show that the P�R� is double-peaked at nonzero R
when T is close to Tc

0�N� �or T=16� and �=4. For T=16 and
�=50, double peak in P�R� still remains �which is not
shown�. Since Tc

0→� in the limit N→�, the antiferromag-
netic interaction is balanced with the ferromagnetic interac-
tion only when �→�. Thus, the system is always in the
ferromagnetic ordered state for any finite �. Therefore, the
market is always in the out-of-equilibrium phase in the limit
N→�. Results for other values of parameters are shown in
Table III.

IV. SUMMARY AND DISCUSSION

We study a generalized spin model for price changes in a
financial market on complex networks motivated by the char-
acteristics of agents. The model assumes that each agent has
tendencies of both trend follower and fundamentalist. Each
tendency is represented by ferromagnetic interaction with
nearest neighbors and antiferromagnetic interaction with a
global self-generated field. The antiferromagnetic interaction
assumes that each agent is smart enough to make his deci-
sion to be a minority in the market dynamics. From the nu-
merical simulations we find that there exists two-phase phe-
nomena on complex networks �16�. When the ferromagnetic
interaction is dominant, P�R� becomes double peaked. On
the other hand, if the number of sellers balances with the
number of buyers, then P�R� becomes usual fat-tailed distri-
bution.

These results provide a clue to understanding the market
dynamics. Our model indicates that the balance between sell-
ers and buyers can be achieved by competition between the
fundamentalist’s feature �global antiferromagnetic interac-
tion� and the characteristics of the trend follower �ferromag-
netic interaction� to maximize the benefit of each agent. If
large market interference is applied to this balanced state,
then most of the buyers �sellers� are abruptly changed to
sellers �buyers�. The sudden changes between buyers and
sellers cause intermittent occurrence of large bursts depend-
ing on the nature of the market interference distribution and
underlying topologies. Moreover, when the fluctuation in the
number of buyers or sellers in the market is small, P�R� can
be approximated by Eq. �5� which is the typical feature of
the market equilibrium phase. On the other hand, if the mar-
ket fluctuation becomes large then the P�R� becomes double
peaked. Thus the market undergoes a crossover from market
equilibrium phase to out-of-equilibrium phase. The results
shows a good agreement with other empirical analysis �16�.
We also find that on RNs and SFNs with ��5 such cross-
over is caused by the temperature and the competition be-
tween ferromagnetic and antiferromagnetic interactions.
However, as we decrease � of SFNs, the underlying topology
also affect the crossover between the two phases. Further-
more, when 2���3 and T�Tc

0 we find that the market is
always in the out-of-equilibrium phase.

Finally, the fluctuation of inverse concentration of buyers
�or sellers� was studied in the agent-based herding model,
and it was found that RNs can cause fat-tailed distribution
through the mean-field approach �8�. In our spin model, we
find that not only the spin fluctuations but also fluctuation of
underlying topology can cause many interesting behaviors,
such as two-phase phenomena.
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FIG. 3. Plot of P�R� on SFN with �=2.5, �=4, and �=2.5
when �a� T=1, and �b� T=16 which is close to Tc

0 ��25 for N
=104�.

TABLE III. Market behaviors for various values of �, �, and T
��Tc

0� on SFNs with 2���3.

� T=1.0 T=16

2.5 Double peak Double peak

�=1 3.0 Double peak Double peak

3.5 Double peak Double peak

2.5 Double peak Double peak

�=4 3.0 Double peak Double peak

3.5 Double peak Double peak

AGENT-BASED SPIN MODEL FOR FINANCIAL MARKETS… PHYSICAL REVIEW E 78, 036115 �2008�

036115-5



�1� B. B. Mandelbrot, Fractals and Scaling in Finance �Springer,
New York, 1997�.

�2� R. N. Mantegna and H. E. Stanley, An Introduction to Econo-
physics: Correlations and Complexity in Finance �Cambridge
University Press, New York, 2000�.

�3� R. Cont and J. P. Bouchaud, Macroecon. Dyn. 4, 170 �2000�.
�4� V. M. Eguíluz and M. G. Zimmermann, Phys. Rev. Lett. 85,

5659 �2000�.
�5� D. Chowdhury and D. Stauffer, Eur. Phys. J. B 8, 477 �1999�.
�6� S. Bornholdt, Int. J. Mod. Phys. C 12, 667 �2001�.
�7� K. Sznajd-Weron and R. Weron, Int. J. Mod. Phys. C 13, 115

�2002�.
�8� S. Alfarano and M. Milakovic, J. Econ. Dyn. Control �to be

published�.
�9� S. Yook and Y. Kim, Physica A �to be published�.

�10� T. Lux and M. Marchesi, Nature �London� 397, 498 �1999�.
�11� T. Kaizoji, S. Bornholdt, and Y. Fujiwara, Physica A 316, 441

�2002�.
�12� S.-H. Yook, H.-J. Kim, and Y. Yim, J. Korean Phys. Soc. 52,

S153 �2008�.
�13� A.-L. Barabási and R. Albert, Science 286, 509 �1999�.
�14� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�15� K.-I. Goh, B. Kahng, and D. Kim, Phys. Rev. Lett. 87, 278701

�2001�.
�16� V. Plerou, P. Gopikrishnan, and H. E. Stanley, Nature �Lon-

don� 421, 130 �2003�.
�17� P. Erdös and A. Rényi, Publ. Math. �Debrecen� 6, 290 �1959�.
�18� D. P. Landau and K. Binder, A Guide to Monte Carlo Simula-

tions in Statistical Physics �Cambridge University Press, Cam-
bridge, 2000�.

�19� M. Bartolozzi and A. W. Thomas, Phys. Rev. E 69, 046112
�2004�.

�20� P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer,
and H. E. Stanley, Phys. Rev. E 60, 5305 �1999�.

�21� R. N. Mantegna and H. E. Stanley, Nature �London� 376, 46
�1995�.

�22� S.-H. Yook, Z. Oltvai, and A.-L. Barabási, Proteomics 4, 928
�2003�; G. Forgacs, S.-H. Yook, P. A. Janmey, H. Jeong, and C.
G. Burd, J. Cell. Sci. 117, 2769 �2004�.

�23� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.
Rev. E 66, 016104 �2002�.

�24� M. Leon, A. Vázquez, A. Vespignani, and R. Zecchina, Eur.
Phys. J. B 28, 191 �2002�.

�25� Handbook of Graphs and Networks, edited by S. Bornholdt
and H. G. Schuster �Wiley-VCH, Weinheim, 2003�.

KIM, KIM, AND YOOK PHYSICAL REVIEW E 78, 036115 �2008�

036115-6


