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We study dynamical scaling of flux fluctuation �̄�t� from the one-random-walker model on regular lattices
and complex networks and compare it to the surface width W�t� of a corresponding growth model. On the
regular lattices, we analytically show that �̄�t� undergoes a crossover from the nontrivial scaling regime to the
trivial one by increasing time t, and we verify the results by numerical simulations. In contrast to the results on
the regular lattices, �̄�t� does not show any crossover behavior on complex networks and satisfies the scaling
relation �̄�t�� t1/2 for any t. On the other hand, we show that W�t� of the corresponding model on complex
networks has two different scaling regimes, W� t1/2 for t�N and W�t�� t for t�N.
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I. INTRODUCTION

Various topological and dynamical properties of networks
arising from real systems have attracted many researchers in
diverse fields �1–4�. The inherent complexity of networks
causes rich behaviors in the dynamical properties of the
physical systems depending on the structure of the underly-
ing networks �1–4�. The random walk is one such example.
The random walk has been widely investigated to understand
the elementary dynamical processes of physical systems on
networks �5–13� and also has many practical applications to
real world systems such as information searching and routing
strategy in the Internet �14–18�. Especially flux to the net-
works and its fluctuation should be very important to physi-
cally understand dynamic flows in the networks. According
to the previous studies �19,20�, the flux fluctuation �i of a
node i shows the power-law dependence on the mean flux
�f i� as

�i � �f i��. �1�

Moreover, the theory suggested that there exist two distinct
universality classes of systems. The first class consists of the
�=1/2 systems. When the internal intrinsic dynamics
mainly control the system, the system belongs to the �
=1/2 class. Packets transportation in the Internet routers �21�
and information carried by electric currents in a micropro-
cessor �22� are members of this class. The second class is the
�=1 class. If the dispersion of input flux to the networks is
the dominant dynamical process, the system belongs to the
�=1 class. The fluctuation on the world-wide-web �WWW�
�23�, the traffic at different locations in the highway system,
and the stream flow of river network belong to the �=1 class
�19�.

To understand the origin of two distinct classes, flux fluc-
tuation of a multi-random-walker model on a complex net-
work was investigated �19�. In the model, Nrw walkers are
initially distributed to randomly chosen nodes of the under-
lying network in each experiment d�d=1,2 ,… ,D�. After
each random walker takes the preassigned t steps, the total
number f id of visitations of node i is measured. If Nrw varies

in each experiment, f id are affected not only by the intrinsic
properties of the random walks but also by variations of Nrw.
From the data set �f id	, one can calculate the mean flux of a
site i,

�f i�t�� =
1

D


d=1

D

fid�t� , �2�

and the fluctuation �i
2�t�,

�i
2�t� = �f i

2�t�� − �f i�t��2. �3�

On the scale-free networks �SFNs� with the degree exponent
�=3, it was found that �i�t� depends on �f i�t�� as Eq. �1�
with two possible exponents, �=1/2 and �=1 �19�. The re-
sults of the multi-random-walker model supported that the
real systems such as Internet routers, WWW, and so on can
be classified into two distinct universality classes by the
competition between the intrinsic internal dynamics and the
external input variations. In contrast to the results of Refs.
�19,20�, another study �24� made efforts to find the system
which has nontrivial �, i.e., ��1/2 or 1 by introducing
impacts depends on the degree of a node. In this paper, we
will show that the flux fluctuation of one random walker on
regular lattices �homogeneous networks� naturally has non-
trivial exponent � by studying the average flux fluctuation.

The average flux fluctuation �̄ over nodes on the network
with N nodes is defined as

�̄2�t� �
1

N


i=1

N

�i
2�t� =

1

N


i=1

N � 1

D


d=1

D

fid
2 �t� − 
 1

D


d=1

D

fid�t��2� .

�4�

The mean flux �f i�t�� should be proportional to t as �f i�t��
=cit, where ci is a constant dependent on the structure of the
given underlying topology. From Eqs. �1� and �4�, one can
obtain

�̄�t� = Ct�, �5�

where C2� 1
N
i=1

N ci
2�. Based on Eq. �5�, we can also easily

understand the power-law behavior �1� by analyzing the de-
pendence of �̄ on t for more broad range of t.*ykim@khu.ac.kr
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In this paper, we study the dynamical scaling properties of
�̄�t� using a one-random-walker �RW� model �Nrw=1� on
several networks.

Since no variation of external flux exists or �Nrw=0, the
dynamics of the system is governed only by the internal
intrinsic dynamics of RW. On regular lattices, especially on
one- and two-dimensional �1,2ds� lattices, we find the non-
trivial exponent ��1/2 ,1 in the infinite system �Lds→��.
The nontrivial � is physically related to the recurrence of the
random walk �25–27�. The flux of a site i depends on the
conditional probability that RW visits the site at a time t
under the condition that the walker has visited the same site
at an earlier time t��	t�. However, in finite-sized 1 and 2ds

lattices, there exists a crossover behavior from the nontrivial
regime ���1/2 ,1� to the trivial regime ��=1/2� in the limit
t→�. This comes from the fact that the visitation probability
of each site becomes constant in the limit t→� for the finite-
sized lattices and thus the dynamics becomes similar to that
of the random deposition �28�. In contrast, the scaling rela-
tion �5� with trivial exponent �=1/2 holds for any time t in
regular lattices with ds
3. The trajectory of RW on lattices
with ds
3 is transient in early time t, therefore �̄�t� follows
Eq. �5� with �=1/2. In the long-time limit, the random depo-
sition occurs by the finite size effect, the dynamical behavior
of �̄�t� does not show the crossover behavior.

The dynamical behavior of �̄�t� in complex networks also
follows Eq. �5� with �=1/2 without showing any crossover
behavior. The scaling behavior seems to be the same as that
of ds
3 regular lattices. However, the dynamical origin of
the scaling behavior in complex network is different from
that in regular lattices. In early time, the dynamics of RW
becomes the same as that of random deposition, because RW
is transient and cannot see the whole structure of the system.
Therefore, the �f i�t�� of each node linearly grows with time
and the �̄�t� increases as Eq. �5� with �=1/2. However, in
the long-time limit, the dynamics of RW is affected by the
heterogeneity of complex network. Since the probability Pi
that a RW visits a node i is proportional to the number of
degree ki �10� as Pi�t→��=ki /
 jkj, the mean flux of each
node increases depending on its degree k in the long-time
limit. Thus we should analyze the dependence of averaged
flux fluctuation on degree, �̄�k�, to fully understand the flux
dynamics.

�̄�t� is physically related to the surface width W�t� of a
corresponding growth model, because the flux configuration
�f id	 can be mapped into the height configuration �hid	 in the
growth model. In the growth model, RW drops a particle
whenever it visits a site i and thus f id�t�=hid�t�. Therefore,
the fluctuation of hid�t�, defined by the surface width W �28�,
is somehow physically related to �̄�t�. The surface width in
the model is

W2�t� =
1

D


d=1

D � 1

N


i=1

N

hid
2 �t� − 
 1

N


i=1

N

hid�t��2� . �6�

In normal lattice systems, the difference between W�t� and
�̄�t� becomes negligible, since there are no breakdowns of
spatial or temporal symmetry such as the local columnar

defect �28� or temporally colored noise �28�. On the other
hand, the intrinsic difference exists between �̄�t� and W�t� on
complex network, since �f i� depends on the degree k for
large t. In this sense it is physically important to compare
W�t� and �̄�t� on complex network to understand the intrinsic
properties of RW on the network.

In this paper, we will focus on the scaling property of the
globally averaged flux fluctuation of one random walker on
regular lattices and complex networks. The scaling property
on regular lattices will be studied by using continuum equa-
tion with colored noise originated from the intrinsic property
of RW. We will also study the scaling property by numerical
simulations.

II. MODEL

In each experiment or trial d, a RW is initially placed at a
randomly chosen site �or node� on a given network. The
network has assumed to have N nodes. If the network is a
regular lattice, then N=Lds where L is the lateral size of the
lattice. At each time step the walker moves to a randomly
chosen node �site� among the nodes �sites� directly linked to
the node �site� where the walker is. In each experiment d, we
measure the dependence of the number of visits f id�t� on the
time step t. By repeating the procedure D times, we calculate
�f id�t��, �i

2�t�, and �̄�t� from Eqs. �2�–�4�.

III. CONTINUUM EQUATION APPROACH

Let us consider a continuum version of random walks to
understand the scaling property of �̄�t�. To calculate the in-
coming flux to the site r� at time t, we introduce the stochastic
variable ��r� , t�. If the RW visits r� at time t, ��r� , t�=1, oth-
erwise, ��r� , t�=0. In the limit L→� RW will satisfy the
diffusion equation and then

���r�,t�� =
1

�2�t�ds/2
exp
− �r� − r�0�2

2t
� ,

���r�,t���r��,t��� =
1

�2�t�ds/2
exp
− �r� − r�0�2

2t
� 1

�2��t − t���ds/2


exp
− �r� − r���2

2�t − t��
� , �7�

where r�0 is the initial position of RW. Physically ���r� , t��
means the probability to find the RW at site r� at time t and
���r� , t���r�� , t��� is the joint probability that the RW is at site
r� at time t and at site r�� at time t�. The evolution of the f�r� , t�
in time is given by the continuum equation,

df�r�,t�
dt

= ��r�,t� . �8�

The solution of Eq. �8� is f�r� , t�=�0
t ��r� , t��dt�. From Eqs. �7�

and �8�, we obtain the expression of �̄�t�. When t�	 t, the
average of f2�r� , t� over the sites �spaces�,f2�r� , t�, becomes
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f2�r�,t� =
1

Lds
� dr�f2�r�,t�

�
1

Lds
� dr��

0

t �
0

t�
���r�,t����r�,t���dt�dt�. �9�

By averaging over initial position r�0,

f2�r�,t� �
1

�2��ds/2

1

Lds
�

0

t �
0

t�−1

�t� − t��−ds/2dt�dt�. �10�

Similarly,

f�r�,t�2 �
t2

L2ds
. �11�

From Eqs. �10� and �11�, �̄�t� becomes

�̄2�t� = f�r�,t�2 − f�r�,t�2 ��
t3/2

L − t2

L2 for ds = 1,
�t ln t�

L2 − t2

L4 for ds = 2,
t

Lds
− t2

L2ds
for ds 
 3.

�
�12�

When t�L2 �L→��, the dominant time dependence of ��t�
becomes

�̄�t� � �
t3/4

L1/2 for ds = 1,
�t ln t�1/2

L
for ds = 2,

t1/2

Lds/2
for ds 
 3.

� �13�

However, when t�L2, the probability ���r� , t�� becomes the
same as ���r� , t��=1/Lds for any r�. Thus the �̄�t� shows simi-
lar dynamical property to that of the random deposition as

�̄�t � Lds� � t1/2 �14�

in regular lattices and we obtain a trivial exponent �=1/2
for t�L2.

IV. SIMULATION RESULTS

Now we show the results of numerical simulation to con-
firm the scaling relations derived in the preceding section. In
the measurement of �̄�t�, we use lattices of L=26 , . . . ,210 for
1ds, L=27 , . . . ,210 for 2ds, and L=27 for 3ds. The number of
experiments is D=100 and the walker takes t=2
108 steps
for 1ds, t=108 steps for 2ds, and t=107 steps for 3ds in each
experiment.

The data in Fig. 1�a� show a crossover from the nontrivial
regime �Eq. �13�� to the trivial one �Eq. �14�� in 1ds. From
the best fit of Eq. �5� to the data in Fig. 1�a�, we obtain �
=0.75�1� for 101� t�105 and �=0.50�1� for 106� t�2

108. This result agrees very well with our analytic expec-
tation that �=3/4 for t�L2 and �=1/2 when t�L2 in 1ds.
In the inset of Fig. 1�a� we show that the dynamical scaling

�̄�t� = t1/2f�t/L2� �15�

holds very well in 1ds. From Eqs. �13� and �14� the scaling
function f�x� should satisfy f���=const and f�x�=x1/4 for x

�0, which are also confirmed numerically in the inset of
Fig. 1�a�.

In 2ds, we obtain �=0.58�1� for t	106 and �=0.51�1�
for t�106 by the simple linear fit of Eq. �5� to the data in
Fig. 1�b�. However, Eq. �13� predicts the existence of a loga-
rithmic correction for t�L2. In order to check the existence
of such correction, we plot �̄�t� against �t ln t�1/2 /L in the
inset of Fig. 1�b� by using the data for t�106. As shown in
the inset the relation �̄�t���t ln t�1/2 /L holds very well in
2ds regardless of the lateral size L.

In 3ds, �̄�t� does not show any crossover behavior. �See
Fig. 1�c�.� From the data in Fig. 1�c� one can see �̄�t�� t�

with �=0.51�1� holds for any time t.
These results in Fig. 1 agree very well with our analytic

expectation in Sec. III for the crossover behavior of �̄�t�
from the nontrivial regime to the trivial one in regular lat-
tices. We also check that in the regular lattices the surface
width W�t� shows exactly the same dynamical behavior as
�̄�t�.

Since the dynamical properties of many physical systems
are known to be affected by the heterogeneity of the under-
lying structure �17,29�, we also investigate the effect of the

FIG. 1. �Color online� Plots of �̄�t� of the one-random-walker
model on �a� one-, �b� two-, and �c� three-dimensional regular lat-
tices. Solid lines are simple fits to the relation �5� to get �
=0.75�1��3/4 for 1ds �a�, �=0.58�1� for 2ds �b�, and �=0.50�1�
�1/2 for 3ds �c�. The inset of �a� shows that the dynamical scaling
�̄�t�= t1/2f�t /L2� holds well in 1ds. The inset of �b� shows the exis-
tence of the logarithmic correction as �̄�t���t ln t�1/2 /L in the early
time �t�L2� in 2ds.
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underlying topology on the flux fluctuation of our model. For
this, we also consider two types of complex networks of size
N=104; random networks �RNs� and scale-free networks
�1–4�. As shown in Fig. 2, the scaling relation of �̄�t� satis-
fies �̄�t�� t� for any t with the exponent ��1/2 on both
RNs ��=0.51�1�� and SFNs ��=0.50�1��. The dynamical
property of �̄�t� can be explained by the random ballistic
deposition in early time regime when there is no variation of
the external flux regardless of the heterogeneity of underly-
ing structures. This implies that the random walker cannot
explore the entire network, and the heterogeneity does not
affect the order of average over space and experiment in Eqs.
�4� and �6�. Thus, both �̄�t� and W�t� are expected to show
the same scaling behavior as �̄�t�� � t1/2 and W�t�� � t1/2

in the early time regime.
However, if t is sufficiently large �or t→��, the probabil-

ity to find a walker at each node becomes uneven. Therefore,
the topological heterogeneity can cause a difference between
�̄�t� and W�t� as shown in Fig. 2. This difference can be
analytically understood. In the limit t→�, �f i�t���kit �10�.
So we obtain for t�L,

W2 =
1

N



i

ki
2

�
 j
kj�2

t2 − 
 1

N



i

ki


 j
kj

t�2

=
A

N�

i

ki
2 −

1

N


i

ki�2�t2 � t2� �� = 1� , �16�

where A= �1/
 jkj�2. From the data in Fig. 2 we obtain �
=0.92�1� on SFN and �=0.93�3� on RN when t�N.

In contrast to W�t�, �̄�t� still follows the scaling relation
�̄�t�� t1/2 for t�N on complex networks �see Fig. 2�. The
average incoming flux of node i of degree ki increases as
�f i�t���kit �10�. Then, from Eq. �1� �i becomes

�i � �f i�� � ki
�. �17�

We measure �2�k� and �f�k�� on SFN with N=104 and t
=107 to find �f�k���k and �2�k��k for reasonably large k as
shown in Fig. 3. Therefore, we expect �2�k��k��f�k�� and
�=1/2 from Eq. �1�.

V. CONCLUSION

We study the scaling properties of the flux fluctuation of
one-RW model on various underlying structures and com-
pare the results with the surface width of the corresponding
growth model. We analytically derive the scaling relation of
�̄�t� on the regular lattices of various dimensions. We find
that �̄�t� scales in a nontrivial way when t�L2 in 1 and 2ds.
For t�L2, �̄�t� scales as �̄�t�� t1/2 in all dimensions due to
the finiteness of the lattices. In order to study the effect of the
heterogeneity of the underlying topology on the scaling
properties of �̄�t�, we also investigate the dynamic property
of one RW model on RNs and SFNs. We show that W
� t1/2 for t�N and W�t�� t when t�N due to the heteroge-
neity of the underlying topology. In contrast to W�t�, we find
that �̄�t� scales as �̄�t�� t1/2 for all t. These results are also
verified by numerical simulations.

ACKNOWLEDGMENTS

The authors thank Professor J. D. Noh for helpful sugges-
tions and critical comments. This work was supported by the
Korea Science and Engineering Foundation �KOSEF� grant
funded by the Korea government �MOST� �Grants Nos. R01-
2007-000-10910-0, R01-2006-000-10470-0, and F01-2006-
000-10093-0�.

FIG. 2. �Color online� Plots of �̄�t� and W�t� on scale-free net-
work �SFN, main figure� and random network �RN, inset�. The
number of nodes are N=104 and the degree exponent of the SFN is
�=3. The solid lines represent the power law �̄�t�� t� and W� t�

with �=�=1/2 and the dashed lines correspond to the power law
W�t�� t� with �=1. The value of � is not changed. In contrast, the
value of � is changed from 1/2 to 1 when t�N for the SFN and
RN.

FIG. 3. �Color online� Plots of ��k� and �f�k�� �inset� against k
on SFN with �=3. The data is taken on the network size N=104 at
time t=107. The solid lines represent �2�k��k and �f�k���k.
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