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We study the statistical properties of the sampled networks by a random walker. We compare topological
properties of the sampled networks such as degree distribution, degree-degree correlation, and clustering
coefficient with those of the original networks. From the numerical results, we find that most of topological
properties of the sampled networks are almost the same as those of the original networks for ��3. In contrast,
we find that the degree distribution exponent of the sampled networks for ��3 somewhat deviates from that
of the original networks when the ratio of the sampled network size to the original network size becomes
smaller. We also apply the sampling method to various real networks such as collaboration of movie actor,
Worldwide Web, and peer-to-peer networks. All topological properties of the sampled networks are essentially
the same as those of the original real networks.
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I. INTRODUCTION

Since the concept of complex network �1� came into the
limelight, many physically meaningful analyses for the com-
plex networks in the real world have emerged. Examples of
such studies include protein-protein interaction networks
�PINs� �2�, the Worldwide Web �WWW� �3�, email networks
�4�, etc. The empirical data or information of the real net-
works can be collected in various ways—for example, trace
routes for the Internet �5� and high-throughput experiments
for the protein interaction map �6�. Thus, it is a natural as-
sumption that the empirical data can be incomplete due to
various reasons which include some limitations on the ex-
periments and experimental errors or biases. As a result,
many real networks which have been intensively studied so
far can be regarded as sampled networks. Moreover, several
studies have shown that the dynamical properties on the net-
works can be significantly affected by the underlying topol-
ogy �7,8�. Therefore, it is very important and interesting to
study the topological differences between sampled networks
and whole networks.

Recently, several sampling methods such as random node
sampling �9,10�, random link sampling, and snowball sam-
pling were studied �10�. Random node sampling is the sim-
plest method in which the sampled network consists of ran-
domly selected nodes with a given probability p and the
original links between the selected nodes. On the other hand,
in random link sampling, the links are randomly selected and
the nodes connected to the selected links are kept. These two
random sampling methods have been used to study the sta-
tistical survey in some social networks. In the random sam-
pling method, however, many important nodes such as hubs
cannot be sampled due to the even selection probability.
Some recent studies show that in some networks such as
PINs, the topological properties of randomly sampled net-
works significantly deviate from those of the original net-
works �9,10�. The idea of the snowball sampling method

�10,11� is similar to the breath-first search algorithm �12,13�.
In the snowball sampling method all nodes directly con-
nected to the randomly chosen starting node are selected.
Then all nodes linked to those selected nodes in the last step
are selected hierarchically. This process continues until the
sampled network has the desired number of nodes �10�. Pre-
vious studies showed that the topological properties of the
sampled networks closely depend on the sampling methods
�10�.

In this paper, we focus on the effect of weighted sampling
on the topological properties of sampled networks. For ex-
ample, the average number of references related to the most
connected 20 proteins is almost 2 times larger than that re-
lated to the least connected 20 proteins in the physical inter-
action database of PINs �14�. This can reflect the fact that the
interactions of the nodes with the large degree are more stud-
ied. Thus, the PIN can be regarded as a kind of sampled
network with the degree-dependent weight. As the simplest
assumption, we consider that the probability to sample a
node i with degree ki is proportional to ki. In order to assign
a degree-dependent nontrivial weight to each node, we first
note the structure of the real networks. Many real networks
are known to be scale-free networks in which the degree
distribution follows the power law �1�

P�k� � k−�. �1�

Moreover, the probability pv�k� that a random walker �RW�
visits a node of degree k �7� is given by

pv�k� � k . �2�

The degree k causes an uneven probability of finding a node
by a RW on the heterogeneous networks. Thus, by using the
RW for sampling we can assign automatically a nontrivial
weight to each node which is proportional to the degree of
the node. Due to the uneven visiting probability, the nodes
having the large degree—i.e., topologically important
parts—can be easily found regardless of the starting position
of the RW. Therefore, we expect that the sampling by the
RW can provide a more effective way to obtain subnetworks
which have almost the same statistical properties as the origi-

*Electronic address: syook@khu.ac.kr
†Electronic address: ykim@khu.ac.kr

PHYSICAL REVIEW E 75, 046114 �2007�

1539-3755/2007/75�4�/046114�5� ©2007 The American Physical Society046114-1

http://dx.doi.org/10.1103/PhysRevE.75.046114


nal one. Furthermore, we study the effects of the heteroge-
neity of the original networks on the RW sampling method
�RWSM� by changing �. We also apply this weighted sam-
pling method to real networks such as the WWW �3,16�,
actor network �17�, and peer-to-peer �P2P� network �18,19�
to obtain the important information of those networks.
Therefore, we expect that this study can provide a better
insight to understand the important properties of real net-
works and offer a systematic approach to the sampling of
networks with various �.

II. MODEL

We now introduce the RWSM. First, we generate original
scale-free networks �SFNs� by use of the static model in Ref.
�15� from which various sizes of subnetworks are sampled.
The size or number No of nodes of the original network with
each � is set to be No=106. The typical values of � used in
the simulations are �=2.23, 2.51, 3.05, 3.40, and 4.2. We set
the average degree �k�=4 for each network. After preparation
of the original networks, a RW is placed at a randomly cho-
sen node and moves until it visits Ns distinct nodes. Then we
construct subnetworks with these Ns visited nodes and the
links which connect any pair of nodes among the Ns visited
nodes in the original network. We use Ns=103, 104, 2�104,
4�104, 6�104, 8�104,105, and 1,2 ,3 , . . . ,9�105. For the
sampling of the real network, we use the WWW, actor net-
work, and Gnutella snapshot provided by Refs. �3,17,18�, as
the original networks. Then, we apply the above procedure.

III. NUMERICAL SIMULATIONS

A. Degree distribution

The degree distribution is one of the most important mea-
sures for the heterogeneity of networks �1�. In Fig. 1, we
compare the degree distributions of the sampled networks to
those of the original networks for various �. We find that the
degree distribution of the sampled network also satisfies the
power law P�k��k−�s.

Especially, from the data in Figs. 1�a�–1�d� we find that
the �s of the sampled networks with Ns /No�0.01 is nearly
equal to � of the original network, even though the �s for the
small Ns has a relatively larger error bar. It shows that the
sampling method by RW does not change the heterogeneity
in degree for networks with 2���3. Since most of the real
networks have 2���3 �1�, this result is practically impor-
tant.

We summarize the obtained �s’s for various Ns’s and �’s
in Table I.

In contrast to the case ��3, �s for ��3 slightly deviates
from the � of the original networks if Ns /No�0.1. �See the
data for �=4.2 in Figs. 1�e� and 1�f� or in Table I.� Numeri-
cally we find that �s is nearly equal to the original � for
Ns /No�0.1 when ��4.2. Of course, one can expect the
substantial deviation of �s from � as � increases further from
�=4.2.

This �-dependent behavior of P�k� can be understood
from Eqs. �1� and �2�. Equation �1� indicates that �k2� di-
verges with finite �k� for ��3. This implies that the topol-

ogy of a network has several dominant hubs which have an
extraordinary large number of degrees when ��3. Since the
probability of visitation of the RW follows Eq. �2�, the RW
can more effectively find the central part of the network
around the hubs when ��3. Thus the sampled networks can
inherit easily the topological properties of the original net-
works.

The RWSM is also applied to real networks. In Fig. 2, we
show the P�k� of the WWW �3�, the actor network �17�, and
the P2P networks �Gnutella� �18�. The number of nodes in
the original real networks is No=392340, 325729, and
1074843 for the actor network, the WWW, and the Gnutella,
respectively. The degree distribution for the WWW follows
the power law with �=2.6 �WWW� �3�. The data in Fig. 2�a�
show that P�k� of the sampled WWW also follows the power
law with ��2.6 even for small Ns �=103�. For the actor
network and the Gnutella, P�k�’s of the original networks are
broad or fat-tailed and do not follow the simple power law
�1�. However, as one can see in Figs. 2�b� and 2�c�, the actor
network and Gnutella network also have big hubs which
cause high heterogeneity in degree, and the sampled net-
works show nearly the same degree distribution as the origi-
nal one. These results also provide evidence that the nodes
with large degrees play an important role in the RWSM.

B. Degree-degree correlation

Another important measure to characterize the topological
properties of the complex network is the degree-degree cor-
relation. Many interesting topological properties such as the

FIG. 1. �Color online� Degree distributions for sampled net-
works of static scale-free networks with �a� �=2.51, �c� 3.05, and
�e� 4.2. Degree exponents �s for the sampled networks extracted
from the original network for the network size No=106 with �b� �
=2.51, �d� �=3.05, and �f� �=4.2. The slopes of solid lines in �a�,
�c�, and �e� and the values of the dashed lines in �b�, �d�, and �f� are
the degree exponents of the original networks.
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self-similarity �20� can be affected by the degree-degree cor-
relation. The degree-degree correlation can be characterized
by �knn�k��, the average degree of the nearest neighbors of
nodes with degree k �21,22�. If the �knn�k�� increases �de-

creases�, the network is characterized as assortative �disas-
sortative� mixing. As shown in Fig. 3�a�, for the static SFN
with 2���3 the original network and the sampled net-
works all show the disassortative mixing. This can be ex-
plained by the dynamical properties of RWs on complex net-
works. In the networks showing disassortative mixing, the
RW on a hub should go through a node of small k to move to
another hub. Thus, many nodes having small k can be con-
nected to the hubs in the sampled networks and the sampled
networks remain disassortative. If the networks have neutral
degree correlation, then the networks sampled by the RW
also show neutral degree correlation. �see Figs. 3�b� and
3�c�.� In Figs. 3�d�–3�f�, we plot �knn�k�� of real networks.
�knn�k��’s of the sampled networks show the same degree
correlations as those of the original networks. As shown in
Figs. 3�d�–3�f�, the degree correlations are assortative, disas-
sortative, and neutral for the actor, WWW, and Gnutella net-
works, respectively.

TABLE I. The changes of the degree distribution exponents �s depending on sampled network size Ns. �’s
are the degree exponents of the original network with No=106.

10−6 N

� 0.8 0.6 0.4 0.2 0.1 0.08 0.06 0.04 0.02 0.01

2.23�5� 2.23�3� 2.24�3� 2.24�2� 2.24�3� 2.3�1� 2.2�2� 2.3�2� 2.3�3� 2.3�5� 2.3�5�
2.51�7� 2.51�6� 2.53�8� 2.51�8� 2.54�8� 2.5�1� 2.6�2� 2.49�7� 2.5�1� 2.5�1� 2.6�5�
3.05�9� 3.1�1� 3.1�2� 3.0�1� 3.06�9� 3.1�2� 3.1�2� 3.1�3� 3.1�2� 3.0�3� 3.1�6�
3.40�8� 3.37�7� 3.40�9� 3.4�1� 3.4�1� 3.4�2� 3.5�3� 3.4�2� 3.7�4� 3.8�4� 4.4�3�
4.2�1� 4.2�1� 4.2�1� 4.2�2� 4.44�5� 4.71�9� 4.91�8� 5.1�1� 5.8�2� 7.7�1� 9.5�3�

FIG. 2. �Color online� Degree distributions for sampled net-
works of three real networks. �a� WWW �No=325,729,�=2.6� �3�,
�b� collaboration network of movie actors �No=392,340� �17�, and
�c� Gnutella �No=1,074,843� �18�. The slopes of the solid line in �a�
is the value of degree exponents obtained from the simple linear
fitting for degree distributions of the sampled networks.

FIG. 3. �Color online� Distributions of �knn� for subnetworks
extracted from the original networks with �a� �=2.23, �b� �=3.05,
and �c� �=4.2. �d� Collaboration network of movie actors. �e�
WWW. �f� Gnutella.
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C. Clustering coefficient

We also measure a clustering coefficient of the sampled
networks. The clustering coefficient Ci of a node i is defined
by

Ci =
2yi

ki�ki − 1�
, �3�

where ki is the degree of node i and yi is the number of
connections between its nearest neighbors �1�. Ci physically
means the fraction of connected pairs among pairs of node
i’s neighbors. Ci is one if all neighbors are completely con-
nected, whereas Ci becomes zero on a infinite-sized random
network �1�.

In Fig. 4, we plot the clustering coefficient C�k� against
degree k. The shifts in the value of C�k� as changing Ns can
be understood from the local topology of the networks. For
example, in the static SFN C�k� ���ln N�2 /N� for �=3 is
larger than C�k� ��1/N� for ��3 �23�. This implies that the
SFN with �=3 has more triangular loops �loops of length 3�
around the nodes of large k than the networks with ��3.
Thus in SFN with �=3 the triangular loops can be sampled
more than the tree like regions by RW, which causes the
large shift in the value of C�k� as changing Ns for �=3. In
real networks, the degree correlation also seems to play an
important role. For example, the actor network shows an
assortative mixing �see Fig. 3�d�.� Considering the assorta-
tivity and C�k� for large k in Fig. 4�d�, we expect that the
actor network has more interconnections between hubs than
WWW or Gnutella. Thus C�k� of the sampled actor networks
can deviate more from that of the original network compared
to WWW or Gnutella �Figs. 4�d� and 4�e��.

More importantly, C�k� is also known to reflect the hier-
archical modular structure of networks �21,24�. C�k� does

not depend on k if the network does not have any well-
defined hierarchical modules �21,24�. As shown in Fig. 4,
C�k� of both the original networks and the sampled networks
shows a tendency to decrease with increasing k for SFN with
�=2.23 and real networks. �See Figs. 4�a� and 4�d�–4�f��.
This implies that the sampled networks have the same modu-
lar structure as the original networks. On the other hand, the
topology of networks with ��3 resembles closely the ran-
dom graph; thus, C�k� does not depend on the degree k �24�.
The dependence of C�k� on k for the sampled SFNs with �
�3 is also nearly the same as the original SFNs. �See Figs.
4�b� and 4�c�.�

IV. DISCUSSION AND CONCLUSIONS

We study the topological properties of sampled networks
by the RWSM with SFNs and several real networks. From
the numerical simulations, we find that the P�k� of the
sampled network follows the power law P�k��k−�s. We also
find that the �s�� for all Ns when 2���3. Even though �s
somewhat increases as decreasing Ns for ��3, the �s’s with
Ns /No�0.1 still follow the original one. We also study the
degree-degree correlation and clustering coefficient by mea-
suring �knn�k�� and C�k�. The sampled networks have the
same degree correlation and modular structure as the original
networks for all values of �. The RWSM is also applied to
the actor, WWW, and Gnutella networks. By measuring
P�k�, �knn�k��, and C�k�, we confirm that the topological
properties of the sampled networks are well maintained after
sampling and the RWSM is an efficient sampling method for
the real networks. A similar degree-based weighted sampling
has already been applied to web crawlers �16,25�, sampling
the P2P networks for studying the size-dependent behavior
�19�, and a model-based testing strategy of communication
systems such as internet router protocol �26�.

The numerical simulations indicate that � plays very im-
portant role in the RWSM. � dependent behavior of the
sampled networks can be understood from the dynamical
property of RWs. Since most of the networks in the real
world have 2���3, the results imply very important mean-
ing in practice. Based on our results, we expect that if we
obtain the empirical data by weighted sampling in which the
weight is proportional to the degree, then the sampled net-
works can share the same topological properties with the
whole network. Especially, the weighted sampling method
becomes very efficient as the heterogeneity of networks in-
creases. At the same time, we also expect that our study can
provide a systematic way to extract subnetworks from the
empirical data to study the size-dependent behavior of vari-
ous dynamical properties on many real networks satisfying
��3 �19�.

On the other hand, if � is sufficiently large �or in the limit
�→	�, the original network becomes homogeneous. For
large �, we thus expect that the RWSM becomes equivalent
to random sampling, since �s increases as Ns decreases as
shown in Fig. 1 and Table I. In practice, the RWSM has a
limited applicability for ��3 when the size of subnetworks
becomes smaller.

FIG. 4. �Color online� C�k� for subnetworks from the original
networks with �a� �=2.23, �b� �=3.05, and �c� �=4.2. �d� Collabo-
ration network of movie actors. �e� WWW. �f� Gnutella.
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As mentioned in Sec. III, the RWSM is very efficient to
sample a node of larger degree rather than a node of smaller
degree, which means that all the nodes of small degree
around the hubs can not be sampled. This is the main differ-
ence between the RWSM and the snowball algorithm. As a
result, some important nodes of small degree �e.g., the con-
necting nodes between hubs in disassortative networks� have
a chance not to be sampled even though the subnetworks
preserve the topological properties of the original network
well. Restrepo et al. recently reported that some nodes of
smaller degree can be more important than a node of larger

degree in several real networks �27�. In future studies it is
desirable to combine the RWSM with the method in which
important nodes of small degree are effectively sampled.
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