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Self-similar networks with scale-free degree distribution have recently attracted much attention, since
these apparently incompatible properties were reconciled in �C. Song, S. Havlin, and H. A. Makse, Nature 433,
392 �2005�� by an appropriate box-counting method that enters the measurement of the fractal dimension. We
study two genetic regulatory networks �Saccharomyces cerevisiae �N. M. Luscombe, M. M. Babu, H. Yu, M.
Snyder, S. Teichmann, and M. Gerstein, Nature 431, 308 �2004�� and Escherichia coli �http://
www.ccg.unam.mx/Computational�Genomics/regulondb/DataSets/RegulonNetDataSets.html and http://
www.gbf.de/SystemsBiology�� and show their self-similar and scale-free features, in extension to the datasets
studied by �C. Song, S. Havlin, and H. A. Makse, Nature 433, 392 �2005��. Moreover, by a number of
numerical results we support the conjecture that self-similar scale-free networks are not assortative. From our
simulations so far these networks seem to be disassortative instead. We also find that the qualitative feature of
disassortativity is scale-invariant under renormalization, but it appears as an intrinsic feature of the renormal-
ization prescription, as even assortative networks become disassortative after a sufficient number of renormal-
ization steps.
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I. INTRODUCTION

Until very recently, the celebrated properties of a scale-
free degree distribution seemed to be incompatible with self-
similar features of networks, in which the number of boxes
NB of linear size �B scales with �B according to a power-law
NB��B

−dB, with an exponent that is given by the fractal di-
mension dB. Using the box-counting method, Song et al.
showed that many scale-free �SF� networks observed in na-
ture can have a fractal structure as well �1�. This result is
striking, because the tiling and renormalization according to
the linear size of the boxes, in which all pairs of nodes inside
a box have mutual distance less than �B, appear to be physi-
cally relevant rather than being a formal procedure. There-
fore, the essential quantity in the tiling is the linear size of
the box, �B, defined by �B−1 being the maximal distance
between the nodes of the box. In the renormalization proce-
dure the boxes are contracted to the nodes of the renormal-
ized network whose edges are the interconnecting edges be-
tween the boxes on the original network.

In this paper we study the genetic regulatory network of
two well-known organisms, Saccharomyces cerevisiae �2�
and Escherichia coli �3�. We first determine the degree-
distribution P�k�, that is the probability for finding a node
with degree k, i.e., with k edges, to read off the exponent �
according to P�k��k−� �4� in order to check that the net-
works are scale-free. The edges correspond to regulatory in-
teractions between transcription factors and target genes �ei-
ther between transcription factors and nontranscription factor
targets, or between two transcription factors�. Next we mea-
sure the ratio of the total number of boxes NB of linear size

�B over the total number of nodes N in the network, that is
NB /N, for various box-sizes �B, to obtain the fractal dimen-
sion dB from NB /N��B

−dB. After renormalizing the networks
according to the procedure proposed in �1�, we measure the
scaling behavior of the degree k� according to k�=s��B�k,
where k� stands for the degree of a node in the renormalized
network, k is the largest degree inside the box that was con-
tracted to one node with degree k� in the renormalization
process, and s��B� is assumed to scale like s��B���B

−dk with
a new exponent dk. The invariance of � under renormaliza-
tion and the transformation behavior of the degree itself im-
ply the relation �1�

� = 1 + dB/dk �1�

between the exponents. Therefore, we check this relation by
measuring dB, dk and comparing the values of � from Eq. �1�
with the measured � from the degree distribution.

One of the important features of networks is their “de-
gree” of assortativity. The notion of assortative mixing was
known from epidemiology and ecology when it was intro-
duced as a characteristic feature of generic networks by
Newman �5�. Assortativity refers to correlations between
properties of adjacent nodes. One particular property is the
�in- or out-� degree of a node as the number of its incoming
or outgoing links, respectively. Degree-degree correlations
can be recorded as histograms; in order to facilitate the com-
parison between networks of different size, they can be also
characterized by the Pearson coefficient. The Pearson coeffi-
cient is obtained from the connected degree-degree correla-
tion function �jk�− �j��k� after normalizing by its maximal
value, which is achieved on a perfectly assortative network.
Here, �jk� stands for the average of having vertex degrees j
and k at the end of an arbitrary edge. The Pearson coefficient
r takes values between −1�r�1, it is positive for assorta-
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tive networks �r=1 for complete assortativity� and negative
for disassortative ones. As it was shown in �5�, the Pearson
coefficient can be rewritten according to

r =

M−1�i
jiki − 	M−1�i

1

2
�ji + ki�
2

M−1�i

1

2
�ji

2 + ki
2� − 	M−1�i

1

2
�ji + ki�
2 , �2�

where M denotes the total number of edges i, i=1, . . . ,M,
and ji, ki denote the degrees of the two vertices at the ends of
edge i. Equation �2� has actually the form in which we mea-
sured the Pearson coefficient for a number of self-similar
networks. The results are presented below. The reason why
this feature is of interest in the present context is its relation
to the power-law or exponential behavior of NB��B�. In par-
ticular, we are interested in the question whether disassorta-
tivity is scale-invariant on a qualitative level under renormal-
ization according to the prescription proposed in �1�, and
why these properties go along. Disassortative features in pro-
tein interaction networks were found and explained by
Maslov and Sneppen �6� on the level of interacting proteins
and genetic regulatory interactions. According to their results
links between highly connected nodes are systematically
suppressed, while those between highly connected and low-
connected pairs of proteins are favored. In this way there is
little cross-talk between different functional modules of the
cell and protection against intentional attacks, since the fail-
ure of one module is less likely to spread to another one.
Also in immunological networks one speaks of lock- and
key-interactions between molecular receptors and antigenic
determinants �7�. In general, complementarity is essential for
pattern recognition interactions, underlying biological and
biochemical processes as well as for symbiotic species in
ecological networks. Of course, it is not at all obvious or
necessary that complementarity in “internal” �functional�
properties should be manifest in topological features like the
degree-degree correlations. Therefore, we study the relation
between self-similarity and degree-assortativity in this paper.

II. MEASUREMENTS AND RESULTS

For the genetic regulatory networks Saccharomyces cer-
evisiae �2� and Escherichia coli �3� we observe a power-law
behavior of NB /N for �B�3 with dB=5.1±0.3 for S. cerevi-
siae and dB=3.4±0.2, respectively. The obtained degree-
distributions are scale-free and satisfy a power-law with ex-
ponent ��2.6±0.2 for S. cerevisiae and ��2.8±0.3 for
E.coli, cf. Fig. 1. The scaling relation �1� between the expo-
nents dB and dk is also satisfied within the error bars for both
networks. From �1� we obtain �=2.8±0.3 for Saccharomy-
ces cerevisiae and �=2.7±0.5 for Escherichia coli.

In Table I we summarize the results also for some addi-
tional networks, for which we list their properties of self-
similarity and disassortativity. If we confirm the property of
self-similarity it means not only the scaling behavior of
NB /N according to a power-law, but also the numerical veri-
fication of the scaling relation of Eq. �1� and the invariance
of � under renormalization �1�. This is more conclusive, be-

cause it is sometimes difficult to disentangle exponential
from power-law behavior of NB /N for networks with a small
diameter �for example, see Fig. 2 for the regulatory network
of S.cerevisiae with an inset that shows the same data points
on a log-linear scale instead of the log-log scale�, whereas
the scaling relation only holds for a power-law of the decay,
it is easier to prove or disprove. A confirmation of �dis�as-
sortativity refers to histograms with �negative� positive slope
of next-neighbor degree-degree correlations and/or a �nega-
tive� positive Pearson coefficient, respectively. In most cases
we measured the degree-degree correlations also between
nodes at distance d=2,3, as indicated in the figures, where
the distance is measured in units of edges.

The first four networks of Table I refer to the genetic
regulatory networks of S.cerevisia and E.coli, the scientific
collaboration network, and the internet on the autonomous
systems level. For these networks the properties of columns
2 and 3 were examined by us, while for the last three net-
works �the biochemical pathway network of E.coli, the actor
network and the world-wide-web�, the self-similarity was es-

FIG. 1. Degree distribution P�k� for �a� S. cerevisiae and �b� E.
coli to read off �.

TABLE I. Networks from datasets characterized by properties of
self-similarity and disassortativity.

Network Self-similarity Disassortativity

genetic reg.S.cerevisia �2� yes Fig. 2 yes Fig. 5�a�
genetic reg.E.coli �3� yes Fig. 4 yes Fig. 5�b�

scient.collab. �8� no Fig. 7�a� no Fig. 7�b�
internet aut.sys. �8� yes �10� yes �10�

biochem.pathway E.coli �8� yes �1� yes �10�
actor �8� yes �1� �yes, k�1000� Fig. 3

www �8� yes �1� yes �10�
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tablished before �1�, and we studied their property of disas-
sortativity in addition. In particular the actor network de-
serves some further comments. The actor-network is self-
similar �1�, but its positive Pearson coefficient suggests that
it is assortative, in contrast to all other self-similar networks
we have studied so far. A closer look at its next neighbor-
degree-degree correlation �Fig. 3� shows an assortative be-
havior for degrees up to the order of 1000, but slowly decays
for larger degrees and becomes disassortative. The degree-
degree correlation between nodes at distance larger than one
is decreasing with degree k for all k.

Moreover, some comments are in order to the yeast-
genetic regulatory network with 3456 nodes and 14 117
edges, �cf. Fig. 2�. Since it has a diameter of 9, the largest �B
value for the tiling is 10. Therefore, we have only 8 data
points available for the fit. Each point corresponds to an

average over 100 tiling configurations. Different tiling con-
figurations result from different starting seeds as well as the
random selection of neighbors during the tiling process. The
data point at �B=3 in Fig. 2 lies clearly outside the fluctua-
tions about the average over different tiling configurations,
thus outside the error bars, which are at least two orders of
magnitude smaller than the respective value of NB /N, so that
they are not visible on the scale of the figure. In Fig. 4, we
find a similar behavior for E.coli. The deviation from the
power-law behavior at �B=3 goes along with an assortative
degree-degree-correlation between nodes at distance d=2 as

FIG. 5. Degree-degree correlation �kn�d�� vs degree k for dis-
tances d=1,2 ,3, �a� S.cerevisiae and �b� E.coli.

FIG. 2. S.cerevisiae: �a� Normalized number of boxes NB as a
function of linear box size �B to read off dB. �b� Rescaling factor
s��B� as function of the box size to read off dk.

FIG. 3. Degree-degree correlation �kn�d�� for d=1 against k for
the actor network, showing initially assortative behavior for k
�1000.

FIG. 4. Same as Fig. 2, but for E.coli to read off �a� dB �b� dk.

SELF-SIMILAR SCALE-FREE NETWORKS AND… PHYSICAL REVIEW E 72, 045105�R� �2005�

RAPID COMMUNICATIONS

045105-3



it is seen from Figs. 5�a� and 5�b�, showing the degree-
degree correlation of S.cerevisiae and E.coli, respectively, at
distances d=1,2 ,3. The data in Fig. 5 explicitly show the
disassortative behavior at d=1 and d=3 for both S.cerevisiae
and E.coli. However, for d=2, we find that there is a certain
value of k ,k=k*, at which �kn� abruptly increases and slowly
decreases for k�k*. Here k*�30 for S.cerevisiae and k*

�10 for E.coli. These mixed properties of assortativity and
disassortativity seem to go along with the deviation from the
power-law behavior of NB /N. On a qualitative level, this is
plausible if we focus on a hub that should be present in a
scale-free network. In an assortative network �assortative say
at distance d, for example, d=2�, this hub is likely connected
to another hub within the distance d. If this hub is chosen as
a seed of a box in a tiling with linear box size �B�d, we
need much less boxes to cover the many nodes in the neigh-
borhood of the hub than in a disassortative network.

In a network which is assortative not only for a certain
range of k, but for all k and at distances d�1, like the sci-
entific collaboration network, NB /N actually decays faster
than power-like for all �B, as it is seen from the exponential
fit of Fig. 6�a�.

The scaling relation between the exponents �, dB, and dk
assumes the scale-invariance �under renormalization� of the
degree distribution, that is the invariance of the exponent �.
Similarly, it is of interest how the disassortativity transforms
under renormalization �as defined in �1��. As we see from
Fig. 7, even networks like the scientific collaboration net-
work �Fig. 6�, which are originally assortative, transform to
more and more disassortative ones under iterated renormal-
ization. �The number of renormalization steps is determined
by the size of the networks, in particular by its diameter. The
final step is achieved when the reduced network consists of
just one node.� Therefore the transformation behavior of dis-
assortativity seems to be an effect of the renormalization
procedure rather than an intrinsic self-similar property of the
network. Similarly, we measured the transformation behavior
of the clustering coefficient under renormalization of self-
similar networks. As the data �10� show, it is an invariant
property of scale-free networks, while it changes under
renormalization for non-self-similar ones like the Barabási-
Albert one �11�.

To summarize, we find numerical evidence that self-
similar scale-free networks are preferably disassortative in
their degree-degree correlations. For biological networks this
result may reflect the complementarity in interactions that is
observed on various levels, as mentioned in the introduction,
although it is still far from being obvious.
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FIG. 6. Scientific collaboration network �a� exponential decay of
NB /N��B� �b� degree-degree correlation �kn�d�� for d=1,2 ,3
against k.

FIG. 7. Pearson coefficient r for several data sets, in particular
the PIN-data taken from �9�.
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