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Conserved growth model with a restricted solid-on-solid condition in higher dimensions
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A conserved growth model with a constraint on neighboring interface heights in substrate dimensions
ds=2,3,4,5 is investigated. A randomly dropped particle is allowed to hop to the nearest site satisfying the
restricted solid-on-solid condition. The scaling properties of the surfadg=2, 3, and 4 are consistent with
those of the continuum equatiem/Jt=— vV*h+1V?2(Vh)?+ 2. The upper critical dimension of the model
is also discussedS1063-651X97)10110-6

PACS numbsg(s): 05.40:+j, 05.70.Ln, 68.35.Fx, 81.10.Jt

Recently there has been great interest in the dynamidropped patrticle is allowed to hop to the nearest site where
properties of the interfaces of various growth modéls An  the RSOS condition is satisfied. If there is more than one
interesting physical property of the dynamic growth processeighboring site at the same distance frotihat satisfies the
is the kinetically rough self-affine surface structure. Most ofRSOS condition, one of them is chosen randomly.
the recent work concentrated on Studying the surface struc- Extensive studies on various physica| propertieS, such as
ture of the growth models, especially on determining thethe surface width, the distribution of hopping distances, and
dynamical critical exponents governing the surface fluctuathe tilt-dependent surface current of the CRSOS model in the
tions[1]. The dynamic scaling hypothesis is that in a finite sypstrate dimensiot,= 1 [18], have shown that the CRSOS

system of lateral sizé, the standard deviation or the root model follows the conserved KPZ equatif$11,16
mean square fluctuatiofv of the surface height starting from

a flat substrate scales B3| dh(x,t)
at

=—1,V*(X,1) +AVA(Vh) 2+ p(x,1), (2

W(L,t)~Lf(t/L?), (1)
where
where the scaling functiori(x) is x? (with 8=a/z) for
x<1 and is constant fox>1. (n(X,0)n(X",t"))=2D3(x—x")o(t—t"). 3
Among the growth models the restricted solid-on-solid

(RSOS model[3,4], in which the differences between the The one-loop renormalization grou.RG) calculations with
neighboring heights of the local columns are usually re_conservec{le] or nonconserved nois¢8] have shown that

stricted to zero or unity in magnitude, has been intensivein€ value of the roughness exponenand the value of the
studied. Even with this restriction, the equilibrium RSOS dynamic exponent in Eq. (2) satisfy the scaling law

model still exhibits a roughening transiti¢8] and the non-
equilibrium growth model[4] follows the Kardar-Parisi-

Zhang(KPZ) equation[5-7] rather well. _ and have claimed that the of Eq. (2) is not renormalized
Recently there have been considerable efforts in cony,qer the RG transformation so that the scaling l@vis

served growth models, in which the number of particles argy a3 16]. There is the other scaling relation derived from
conserved after being deposited, because of the possible ref, g rface current conservatif® 16,9

evance to the real molecular beam epitaxMBE) growth
[8—-16. We have also studied a conserved growth model z—2a—ds=0, (5)

with the RSOS conditiof17,18. The growth algorithm of

the “conserved RSOSCRSOS model” is very similar to  whered is the substrate dimensions. From both Ej.and

the simple RSOS modé#] except for a relaxation process. Eq. (5) one can get the supposedly exact values of the expo-
The growth rule is following:(l) A site X is selected ran- nents:

domly on ad¢-dimensional substratdll) If the restricted

solid-on-solid condition on the neighboring heights @e=(4-dy)/3, Z,=(8+dy)/3,

|sh|=0,1, ... N is obeyed after a particle is depositeckat
whereN is a preassigned restriction parameter, then a growth

is permitted by increasing the heightx) —h(x)+1. (I If o wever, recently Jansséhd] has claimed that the scaling

the RSOS condition is not obeyed at the positianthe  relation (4) was derived from an ill-defined transformation
[8,16] and the relation should be modified as

a+z=4, (4)

Be=aelZe=(4—ds)/(8+dy). (6)

*Electronic address: ykim@nms.kyunghee.ac.kr a+z=4-36. (7
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The two-loop RG calculatiohl19] has shown tha# is very
small (6<0.03) fords=1,2,3 ands=0 for the upper critical
substrate dimensiod{=4 wherea=0 and8=0. If there
exists such a correction, then the true values of the exponents
a,z,3 for Eq. (2) are expected to be slightly smaller than the
corresponding values in E).

In this paper we present the simulation results for the
CRSOS model on substrate dimensiahs-2, 3, 4, and 5.

The motivation of our study is to check whether the CRSOS =
model on higher-dimensional substrates also follows(Ey. £
or not. The RG calculations8,19] for Eq. (2) have predicted

that the upper critical dimensiodf is four. We have mea-
sured the surface roughneg#t) of the CRSOS model in
higher dimensions and found that~Int in d;=4. From the
theoretical point of view it should be very interesting to find
whether the scaling relatio@) is exact or not, even though

the correction term of Eq. (7) is probably quite small. So

the other motivation of our study is to compare Janssen’s
correction [Eq. (7)] with the value of exponents in the
CRSOS model.

There are several ways to simulate the CRSOS model on FIG. 1. Surface widthW of the CRSOS model as a function of
the ds-dimensional lattice due to the growth ruldl ). Con-  time in log-log plot on a square latticel K L=256x 256). CD
sider the CRSOS model on a two-dimensional square latticeneans the data for the model based on a chemical distance measure
If a site of coordinateX,y) is selected and the site does notand RD means the data for the model based on a real distance
satisfy the RSOS condition, then we should seek the nearesteasure. The solid lines are the lines correspondingrt®.18 and
site that satisfies the RSOS condition for the growth. Wher8=0.19, respectively.
searching for the nearest sites, we should choose one dis-
tance measure among the several possible distance measubpetween the data decreases as a function of time. As one
in the square lattice. One possible measure is the real disxpected, the modification of the distance measures does not
tance(RD) measure. If one uses the RD measure, the dischange the universality of the model. The valuesBofor
tance betweenx(y) and (@,b) is \(x—a)?+(y—Db)?. The both measures approach around 0.19 for-B The values
other possible measure is the chemidaltice-bond dis-  of B are close to, but smaller thad,=1/5 inds=2 [see Eq.
tance(CD) measure. If one uses the CD measure, the dist6)].
tance betweenxy) and @,b) is |x—a|+|y—b|. In the CD To get an estimation o, the simulations for the model
measure, all eight next nearest neighborsxfy], i.e., the based on the CD measure have been done on a larger square
sites at k+1y*1), (x*2y), and ,y*2), have the same lattice substrate with the sizex L =800x800 and the re-
distance away fromxy), but in the RD measure those at sults are shown as the plot ofwit®2 againtst It in Fig. 2.
(x*x1y=1) are nearer tox,y) than those at{+2y) and Then we have measured the successive slopg)(of the
(x,y=2). curve as a function of 1/and extrapolated the slope-(y) to

Let us first discuss the results of the simulations on &=, where y=0.2— g is around 0.013. So we have ob-
square lattice ds=2). Our simulations have been done tained 6~0.065. In a similar way, from the W versus I
mainly for the restriction parameté&=1. As explained in plot, we have also measured the successive sloge af a
the previous paragraph, we can think of two versions of thdunction of 1. The extrapolated value @8 is around 0.19
CRSOS model, one based on the CD measure and the othaith §~0.05. We have found that there is a consistent trend
on the RD measure. The simulations are performed from af nonzeroé. The estimated values are somewhat larger than
flat square lattice with the periodic boundary condition. ToJanssen's value of 0.014 th=2 [19]. One of the possible
determine the growth exponemt, we have measured the explanations for the larger value éfis due to the systematic

root mean square fluctuatioMg(L,t) of h(x,t) as a function ~Small size effects. More large simulations in other dimen-
of the ordinary Monte Carlo time for a substrate size SIONS are required. _

L x L =256x 256, averaging over 100 independent runs. The For the exponenta, we have used the relation
data for CRSOS models based on both the CD measure af(L,t) ~L“ in the steady-state reginte-L* [1]. We have
the RD measure are shown in Fig. 1. Using the relatiortsed the system sizds=16,24,32,47,64 for the measure-

W~t# for t<L?[1] and the data for In=5 in Fig. 1, we have ment of W(L,t=) in the steady-state regime. From the
obtained data shown in Fig. 3, we have obtained

Int

$=0.19+0.01 (CD), B=0.18+0.01 (RD) «=0.63:0.02 (CD), «=0.60+0.02 (RD) (d.=2).
9

for ds=2. (8)
As shown in Fig. 3W(=)’s with CD measure are slightly
As one can see from Fig. 1, the data for CD measure aremaller than those with RD measure for the smaller system
slightly smaller than those for RD measures, but the gapsizes. The gap between them decreasésiasreases. So we
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FIG. 2. Plot of InfMt>?) against It for ds=2. The data folV in FIG. 4. Plot of INW/L?? against It for the steady-state regime.

this figure are taken for the model based on the CD measure on Ehe negative slope of the guide line is corresponding+d0.05.
square lattice with the sizex L =800x 800.

should be ¢ 6). The slope of the fitted line in Fig. 4 is

expect that's for both measures also approach commonlyaround—0.05. Thus the estimated from W() is close to
around 0.62 for larget.. This result fora is also close to, the value from the analysis of time-dependent widthit is
but smaller thang,=2/3 for d.=2 [see Eq(6)]. Since the also somewhat larger than Janssen’s value of 0.0&i4=2.
estimated error is somewhat large, we could not exclude the We have also investigated the correlation function
values in Eq.(6) through the numerical simulation only. G(r,t)=([h(x+r,t)—h(x,t)]?) of the CRSOS model. As
From Egs.(8) and (9), we can getz~0.63/0.19=3.32 and shown in Fig. 5, the correlation function of the model based
a+2z~3.95 for the CD measure armk0.6/0.18<3.33 and on the CD measure satisfies the scaling relation
a+2~3.93 for the RD measure. Even though the values of5(r,t) =r2*f(r/t'?) well if one use the values of exponents
a are smaller than 2/3, the values @ftz are very close to « andz=a/B in Egs.(8) and(9). We have also confirmed
4. If there are some corrections for the scaling relationthat the correlation function for the RD measure also satisfies
a+z=4, then they are probably very small. the corresponding scaling law well.

To get an estimation ob from W(«), we have plotted
INW/L?" againstL as shown in Fig. 4. The slope of this plot

0
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v L=39 (CD)
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InL FIG. 5. The data collapse of the scaled height-height correlation

functions G(r,t) on a square lattice fot=10,2Q...,130 with
FIG. 3. W in a steady-state regime on a square lattice as ar=0.63 andz=3.32. The data are for the CRSOS model based on
function of the substrate siZe in a log-log plot. the CD measure.
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and this curve is also shown in Fig. 6. In other words, a good
straight line can be obtained in a semilogarithmic plot. So we
believe that the logarithmic behavior is more plausible. In
the inset of Fig. 6, thel;=5 data show the saturation of the
width after the initial transient times, implying thdt=5 is

dZ=4 above the critical dimension. The result fdg=4 indicates

0 2Io 4Io slo slo 1(I)0 9,°’°9 o L. . .
t o s d=s that the upper critical substrate dimensitfnof the CRSOS
-04 | e model is 4. Since RG calculatiori8,19] predict thatd of

In W
\
Q

~ Eq. (2) is 4, this result supports that the CRSOS model fol-
el e lows Eq.(2). The value ofg from the simulation ird,=3 is
05| 4 L smaller thanB,=1/11. One possible explanation is thais
° o renormalized such that there exists some correction in Eq.
o (7) like Janssen’s correctidri9] in addition to the effects of
06} © & A ABAMALITIES. both the small system size and short simulation times.
“ L oot We have investigated a conserved RSOS growth model in
higher dimensions, where a dropped particle is allowed to
& hop to the nearest site satisfying the RSOS condition. The
0 1 > 3 4 5 values of 8 and « are close to, but slightly smaller, than,
those in Eq(6) and the deviations in the values @fand 8
seem to be somewhat larger than Janssen’s corrections.
FIG. 6. Surface widthW of the CRSOS model as a function of However, we have found that the CRSOS model has the
time in log-log plot on hypercubic lattices fai;=3, 4, and 5. The  upper critical substrate dimensial{=4 and the numerical
dashed line follows Eq(10). The inset is for the plot oV as a  yalue ofa+z is close to but less than 4, consistent with Eq.
function oft in dg=3, 4, and 5. The solid curve in the inset follows (7). Considering the magnitudes of the estimated errors, the
Eq. AD. results for the CRSOS model do not exclude the values in
g. (6). So we could not claim conclusively that our model
reakq 19] the scaling relatiorr+ z=4 due to the computer
AiImitation. However, we find a consistent deviation of the
exponents from Eq6). More larger simulations are required
to find the corrections. On a square lattice, we have measured
the surface width for both chemical distance measure and

In ¢

Next we discuss the simulation results of the CRSO
model on hypercubic lattices ids=3, 4, and 5. Here we
have used the CD measure only. The early time behaviors
W(t)'s are shown in Fig. 6. The data fdg=3 show a good
straight line from the beginning, but the data thr=4 and 5
are curved all the time. From the relatig(t) ~t# and the

data for It>3, we have obtained real distance measure. As one expected, the value of the
exponent does not depend on the ways to define the distance.
B~0.08 (ds=3) (100  As awhole, theN=1 version of our CRSOS model in higher

. . ) ) dimensions follows the continuum equatifdaqg. (2)] well.
and the fitted line corresponding &= 0.08 fords=3 is also

shown in Fig. 6. It is hard to distinguish numerically between ~One of us(JMK) would like to thank K. Y. Moon for

a logarithmic behavior and a power law behavior with a verynumerical help. This work was supported in part by the
small value of the power. A straight line fitting th=4 data ~KOSEFR951-0206-003-2 the Basic Science Research Pro-
in a log-log plot for I>3 gives8~0.02. It is close to zero 9rams, the Ministry of Education of Korea 1996, Project No.

and the data are also well fitted by the curve BSRI-96-2443, Hallym Academy of Science in Hallym Uni-
versity and by the KOSEF through the SRC program of
W(t)=0.015Irt (or B=0) (ds=4) (1)  SNU-CTP.
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