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Information diversity and anomalous scaling in asymmetric social contagion process on
low-dimensional static networks
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To understand how competition affects the diversity of information, we study the social contagion model
introduced by Halvorsen-Pedersen-Sneppen (HPS) [G. S. Halvorsen, B. N. Pedersen, and K. Sneppen,
Phys. Rev. E 103, 022303 (2021)] on one-dimensional (1D) and two-dimensional (2D) static networks. By
mapping the information value to the height of the interface, we find that the width W (N, t ) does not satisfy the
well-known Family-Vicsek finite-size scaling ansatz. From the numerical simulations, we find that the dynamic
exponent z should be modified for the HPS model. For 1D static networks, the numerical results show that the
information landscape is always rough with an anomalously large growth exponent, β. Based on the analytic
derivation of W (N, t ), we show that the constant small number of influencers created for unit time and the
recruitment of new followers are two processes responsible for the anomalous values of β and z. Furthermore,
we also find that the information landscape on 2D static networks undergoes a roughening transition, and the
metastable state emerges only in the vicinity of the transition threshold.
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I. INTRODUCTION

The spread of information such as news, ideas, cultural
traits, or new technology on a social network takes place
through social contagion processes [1–7]. In traditional mod-
els for information dissemination, the mass media has played
the role of the outlet of news or new information. The nontriv-
ial effect of mass media on cultural dissemination has been
investigated [8–10]. In contrast to the traditional models, due
to the recent explosive growth of online social network ser-
vices, each individual now plays the roles of the news provider
and the news consumer. Furthermore, some members of such
global online social networks collect a huge number of fol-
lowers through social interactions and become an influencer.

In such information-spreading dynamics on social net-
works, competition is ubiquitous and is known to cause
nontrivial phenomena [11,12]. Recently, Halvorsen-Pedersen-
Sneppen (HPS) introduced a simple model to investigate how
influencers compete for attention on an asymmetric social
network [13]. In the HPS model, the global asymmetric in-
teractions between influencers and followers are integrated
into local reciprocal interactions. The local reciprocal inter-
actions are represented by the static undirected network. The
basic idea of the HPS model is that the influencers build up
a network of followers through interaction along the local
reciprocal network. The capacity for interaction is determined
by the age of the information [13]. It means that the users
are more attracted to the new information than to the old
information. The novelty of information is known to cause
many interesting phenomena in information dynamics, such
as the evolution of popularity [14–17]. The probability to
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produce new information in the HPS model is proportional
to the degree of the node (or the number of followers) in the
global asymmetric network. The degree-dependent probabil-
ity of the HPS model causes a nontrivial phase transition as in
the opinion dynamics model [18]. In addition, the HPS model
assumes that each follower maintains only one directed link
to an influencer which represents limited attention [19]. This
limited attention causes local competition between informa-
tion.

From the numerical simulations, Halvorsen et al. found that
the HPS model shows many interesting phenomena due to the
competition for attention among the information providers on
social networks [13]. For example, by measuring the time-
averaged size of the largest subculture on finite networks, they
suggested that there can be a phase transition from a highly
ordered regime to a disordered regime of a multicultural state.
In addition, they also showed that there is a metastable state
in which one influencer maintains dominance for a sustained
period. This metastable state decays into a fragmented state
that divides attention between influencers or jumps to another
metastable state. Even in the highly ordered regime, they
addressed that the jumps between different metastable states
were possibly observed.

In this paper, we investigate the dynamical properties of
the information diversity generated by the HPS model. For
this, we map the value of the information into the height of
the interface as in the innovation spreading model [3,4], and
we analyze the numerical results with the finite-size scaling
(FSS) ansatz. Although social interaction networks can have
long-range connections and heterogeneous topology [20,21],
we restrict ourselves to low-dimensional cases, leaving the
analysis of such heterogeneous structures for the future. By
carefully redefining the control parameters and measuring the
width of the information landscape, we find that the width
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of the information landscape shows an anomalous scaling
behavior. Furthermore, we find that the HPS model is always
in the fragmented rough phase for one-dimensional (1D) static
social networks. On the other hand, the model undergoes a
roughening transition on two-dimensional (2D) static social
networks as we change the control parameters. We also find
that the metastable state emerges only in the vicinity of the
transition threshold on 2D static networks.

This paper is organized as follows. In Sec. II the definition
of the model is provided. The numerical results and analytical
derivations on both 1D and 2D static networks are in Sec. III.
In Sec. IV we summarize our results.

II. MODEL

The HPS model on the low-dimensional regular lattice is
defined as follows [13]. Let N be the number of nodes commu-
nicating through the d-dimensional static social connections.
Each node i is characterized by the state φi = F or I . Here F
represents a follower state and I denotes an influencer state,
respectively. Each node i also has information whose value
is τi. Let pi = p0(1 + ηki ) be the probability that a node i
generates new information. Here ki is the number of followers
of node i and η is a positive feedback parameter between infor-
mation creation and the number of followers. Thus, {ki : i =
1, . . . , N} describes the topology of the influencer-follower
network. ki = 0 implies that φi = F . Because of the limited
attention, each follower is allowed to have at most one di-
rected link to an influencer at any time t . At each unit time
step, there are N updates of the state or topology of the
influencer-follower network. The influencer-follower network
is a time-dependent and directed network.

At t = 0 all nodes are in the F state with τ = 0. Let �i be
the set of followers of node i. The update rule is defined as
follows (see Fig. 1 for schematic illustration).

(i) Randomly select a node i. The chosen node creates new
information with a probability pi. If φi = F , then φi changes
from F to I and sets the information value as τi = t . On the
other hand, if φi = I , then it updates its information to τi = t ,
and all its followers also update their information, i.e., τ j = t
for ∀ j ∈ �i. With a probability of 1 − pi, nothing happens.

(ii) Among the connected neighbors of i along the static
social network, we randomly choose a node n. If φn = F and
τi > τn, then n updates its information value to τn = τi. And
n disconnects the directed link to the present influencer and
follows the same influencer as i. On the other hand, if φn = I
and τi > τn, then we set τn = τi and τ j = τi for ∀ j ∈ �n.

(iii) To prevent the system from freezing up with influ-
encers who cannot recruit followers, at the end of each time
step, all influencers i with |�i| = 0 change their states φi =
I → F . As addressed in Ref. [13], due to the demotion, the
number of influencers is eventually saturated around some
steady-state value.

The transition between the ordered phase and the disor-
dered phase on 2D static networks is reported in Ref. [13].
From the numerical simulations, they obtained a phase dia-
gram using two control parameters, p0 and η. However, we
find that as N → ∞ the system is always in the ordered state
regardless of the value of p0 for all possible values of η

(∈ [0, 1]) on 2D static networks when we use p0 as one of

the control parameters. It originates from the low information
creation rate for N � 1. As addressed in Ref. [13], p0 should
be sufficiently small to guarantee that pi never exceeds unity.
When p0 � 1 an emerging influencer recruits most of the
nodes as its followers before the next information creation
event occurs. In order to avoid the effect of a low-information
creation rate on the possible phase transition, we use N p0 as
the control parameter instead of p0. Here N p0 is the lower
bound of the average number of information created for a unit
time interval. We also restrict the range of p0 to p0 ∈ [0, 1/N]
as in Ref. [13]. As we shall show, this modification of the
control parameter gives a robust phase diagram.

III. WIDTH AND FAMILY-VICSEK FSS ANSATZ

In order to measure the diversity of information value, we
use the concepts developed in the studies on kinetic surface
roughening [22]. To do this, we map the information value
of each node into the height of the interface. The roughness
of the interface (or the information diversity) is generally
described by the width W (N, t ), defined as

W (N, t ) ≡
(

1

N

N∑
i=1

[τi(t ) − τ̄ (t )]2

)1/2

. (1)

Here, τ̄ (t ) represents the average information value at time t ,

τ̄ (t ) ≡ 1

N

N∑
i=1

τi(t ). (2)

When the interface is self-affine, W (N, t ) is known to satisfy
the Family-Vicsek FSS ansatz [23]:

W (N, t ) ∼ Nα f

(
t

Nz

)
, (3)

where the function f (x) scales as f (x) ∼ xβ for x � 1 and
f (x) → const. for x � 1. The dynamic exponent z satisfies
the relation z = α/β. Here, since the information can also
spread along the influencer-follower network, we use the num-
ber of nodes N instead of the linear dimension L of the static
underlying networks in Eq. (3).

IV. RESULTS

A. Numerical results on 1D static networks

As the simplest case, we first study the behavior of W (N, t )
on 1D static networks. In Fig. 2(a) we show the obtained
W (N, t )′s for N = 2048 ∼ 16 384 on 1D static networks with
(N p0, η) = (1.0, 0.5). As expected from Eq. (3), we find that
W (N, t ) grows as

W (N, t ) ∼ tβ (4)

for the initial transient period. From the best fit of Eq. (4)
to the data, we obtain β = 1.9 ± 0.1 for N = 16 384. This
initial growing regime is followed by a saturated regime at
which W (N, t → ∞) = Wsat (N ). From Eq. (3), we expect that
Wsat (N ) satisfies the scaling relation

Wsat (N ) ∼ Nα. (5)
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FIG. 1. Schematic illustration of the HPS model on a two-dimensional static network. The upper layers represent the influencer-follower
(or global asymmetric) networks and the lower layer denotes the two-dimensional static social connection (or local reciprocal interactions).
Solid circles are the influencers and the open circles are the followers. Arrows in the upper layers stand for influencer-follower relations. We
assume ti < ti+1 (i = 2, 3, . . .). (a) There are initially two different information clusters. Each cluster is enclosed by a closed path. The node
i ( j) is an influencer with τi = t1 (τ j = t2). The dashed lines between the layers denote that the two nodes connected by the dashed line are
the same. (b) At t = t3, the node i (marked by the dashed circle) is randomly selected and creates new information (τi = t3) with a probability
pi. (c) The nearest neighbor of i recruits a follower (node m) among its nearest neighbors in the static network. Since t3 > t2, m changes its
information to τm = t3, disconnects the directed link to j, and makes a new link to i. The thick arrow in the lower layer denotes the direction
of the information flow. (d) At t = t4, the node n is randomly selected and becomes a new influencer by creating new information of τn = t4

with the probability pn. Thus, n disconnects the directed link to j. (e) The new influencer n recruits its nearest neighbor q as its follower. Thus,
the information flows form node n to q. (f) At t = t5, the node s is randomly selected without the creation of new information and selects j to
recruit as a follower of i. Let us assume that t2 < t3. Since the node j is an influencer, j only adopts the information of s (τ j → t3) without the
change of the influencer-follower network.

As shown in the inset of Fig. 2(a), we obtain α = 0.49 ± 0.01.
From the obtained α and β we find z = 0.25 ± 0.02. However,
as shown in Fig. 2(b), W (N, t )/Nα does not collapse into a sin-
gle curve with the obtained exponents. We find a systematical
deviation of W (N, t )/Nα for the initial transient regime. This
indicates that W (N, t ) obtained from the HPS model does not
satisfy the Family-Vicsek FSS ansatz (3).

To find the correct scaling form, we measure the crossover
time t× at which W (N, t ) crosses over from the behavior of
Eq. (4) to that of Eq. (5) for various N . As shown in the inset
of Fig. 2(b), we find that t× scales as

t× ∼ Nz′
, (6)

with the modified dynamic exponent z′( �= z). Using the least-
squares fit we obtain z′ = 0.50 ± 0.02. Since W (N, t ) satisfies
Eqs. (4) and (5) [see Fig. 2(a)], only the dynamic exponent z

in Eq. (3) is replaced by z′. Thus, we assume that the value of
z′ should be

z′ = z + 1

4
= α

β
+ 1

2β
= α + 1

2

β
. (7)

Using these exponents, we modify the FSS ansatz as

W (N, t )N1/2 ∼ Nα′
f

(
t

Nz′

)
, (8)

where α′ = α + 1
2 and the new dynamic exponent z′ = α′/β.

The function f (x) scales as f (x) ∼ xβ for x � 1 and f (x) →
const. for x � 1, as in Eq. (3).

In Fig. 3 we replot W (N, t ) in the form suggested by
Eq. (8) for various values of N p0 and η. When η = 0 (without
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FIG. 2. (a) Plot of W (N, t )′s for N = 2048 ∼ 16 384 on 1D static
networks with (N p0, η) = (1.0, 0.5). t× indicates the crossover time
for N = 16 384. The solid line represents W (t ) ∼ t1.94. The dashed
line denotes Eq. (13). Inset: Plot of Wsat (N ) against N . The solid line
stands for Wsat (N ) ∼ N0.5. (b) Scaling plot of W (N, t ) using Eq. (3).
Inset: Plot of t×(N ) against N . The solid line represents the relation
t× ∼ t0.5.

feedback), each node has the same probability, pi = p0, to
create new information and become an influencer, regardless
of the value of N p0. As a result, the information landscape
becomes rough for η = 0. By using Eq. (8), we obtain β =
1.9 ± 0.1 for (N p0, η) = (0.1, 0.0) and β = 1.8 ± 0.2 for
(N p0, η) = (1.0, 0.0) as shown in Figs. 3(a) and 3(b), respec-
tively. From the data in the inset of Figs. 3(a) and 3(b), we find
that Wsat (N )N1/2 satisfies the power law

Wsat (N )N1/2 ∼ Nα′
. (9)

From the best fit of Eq. (9) to the data, we obtain α′ =
1.02 ± 0.02 for (N p0, η) = (0.1, 0.0) and α′ = 1.00 ± 0.01
for (N p0, η) = (1.0, 0.0). Using the obtained values of α′ and
β, we estimate the dynamic exponent z′ = 0.53 ± 0.03 for
(N p0, η) = (0.1, 0.0) and z′ = 0.55 ± 0.07 for (N p0, η) =
(1.0, 0.0). As shown in Figs. 3(a) and 3(b), W (N, t )N1/2

shows a good scaling collapse with these exponents, con-
firming the suggested modified FSS ansatz (8). For other
values of (N p0, η), we find the same scaling behavior with
identical exponents within the estimated error [see Figs. 3(c)
and 3(d)]. The obtained exponents are β = 2.0 ± 0.3 and
α′ = 1.0 ± 0.1, for all possible values of (N p0, η). These
results clearly show that the HPS model is always in the
rough phase on 1D static networks which is characterized by

FIG. 3. Scaling collapse of W (N, t )N1/2 for (a) (N p0, η) =
(0.1, 0.0), (b) (N p0, η) = (1.0, 0.0), (c) (N p0, η) = (0.1, 1.0), and
(d) (N p0, η) = (1.0, 1.0). The solid lines represent the relation
W (N, t ) ∼ tβ with (a) β � 1.95, (b) β � 1.85, (c) β � 1.99, and
(d) β � 1.95. Insets: Plot of Wsat (N )N1/2 against N . The solid lines
denote the relation Wsat (N ) ∼ Nα′

with (a) α′ � 1.02, (b) α′ � 0.99,
(c) α′ � 1.02, and (d) α′ � 0.99.

α = α′ − 1/2 > 0 [22]. This result coincides with van Hove’s
nonexistence theorem [24] as addressed in Ref. [13].

B. Analytic derivation of the exponents for 1D static networks

The value of β in many interface growth models is gen-
erally smaller than 1 [22]. However, we obtain β ≈ 2 in the
HPS model on the 1D static network. In order to understand
the anomalously large value of β, we focus on two processes
for the initial growth of the information value: (i) The constant
and small number of influencers which is created for a unit
time interval and (ii) the recruitment of followers. For the
initial transient period, process (i) means that there is at most
one node which can create new information and become an
influencer at each time step, since p0 � 1/N . By the definition
of the model, the value of information of the influencer is
given by the time at which the node becomes the influencer.
This value of information is also hardly changed for the initial
period due to the small value of p0 for N � 1. Furthermore,
the total number of influencers during this period is very small
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FIG. 4. Schematic diagram for the early-time evolution of clus-
ters on the 1D static network at t = τ2 (τ2 > τ1). (a) The (red)
rectangle denotes the cluster of nodes following the same influencer
whose information value is τ1. The solid arrows on the top of nodes
denote the follower network. The (white) open circles are nodes of
τ = 0 whose state is φ = F , but they do not follow any influencer.
(b) A node (green circle) creates new information at t = τ2 with a
probability p0 and becomes an influencer. The (blue) dashed circles
are the nodes at the boundary of each cluster. Each boundary node
randomly selects one of its neighbors on a static network [represented
by (black) dotted arrows]. (c) The node at the right boundary of the
cluster of τ1 recruits a new follower and sτ1 = 5, while the node at the
left boundary cannot recruit a new node because it selects the node
in the same cluster. At the same time, the new influencer recruits one
of its neighbors and sτ2 (τ2) = 2.

compared to N and sparsely distributed over the 1D static
network.

Let sτ (t ) be the size of the cluster τ at t (t � τ ). sτ (t )
is composed of an influencer whose information value is τ

and its kτ (= sτ − 1) followers. The nodes in the cluster share
the same information created at τ . The schematic diagram for
the evolution of clusters is depicted in Fig. 4. When a node
becomes an influencer, it also recruits one of its nearest neigh-
bors in the static network as its follower. Thus, sτ (τ ) = 2. For
t > τ , the influencer created at τ can only recruit followers
due to the low information creation rate. Since only the nodes
located at the boundary of the cluster can recruit followers
[see Fig. 4(b)], the time evolution of sτ (t ) can be written as

sτ (t ) = 2 + c(t − τ ). (10)

Here c = 1 for the 1D static network (see Fig. 4) because the
cluster whose size is larger than two recruits one neighboring
node at each t on average.

Let us consider the case N p0 = 1 for simplicity. Then, only
one node changes its state to I on average at each time step.
Thus, at t there are t influencers in the network when t � t×.
The total number of nodes with τ > 0, K (t ), is

K (t ) =
t∑

τ=1

sτ (t ). (11)

FIG. 5. (a) Plot of sτ (t )′s against τ for N p0 = 1.0, η = 1.0, and
N = 16 384 when τmax reaches τmax = 20 and τmax = 30. The solid
lines represent the relation sτ (t ) ∼ −τ . (b) Plot of K (t ) against t . The
solid line denotes the relation K (t ) ∼ t δ with δ = 1.8. The dashed
line represents Eq. (15).

From Eqs. (1), (10), and (11), we rewrite W (N, t ) as

W (N, t ) = N−1/2

[
t∑

τ=1

sτ (t )(τ − τ̄ )2 + [N − K (t )]τ̄ 2

]1/2

.

(12)
Since τ̄ = ∑t

τ=1 sτ τ/N � 1 for N � 1, we ignore τ̄ in
Eq. (12). Using Eq. (10), W (N, t ) can be approximated as

W (N, t ) ≈ N−1/2

[
t∑

τ=1

[2 + (t − τ )]τ 2

]1/2

≈ N−1/2[t (t + 1)(t2 + 7t + 4)/12]1/2. (13)

In Fig. 2(a) we display Eq. (13) for the initial transient period.
As shown in Fig. 2(a), Eq. (13) agrees very well with the
numerical result. Therefore, we obtain

W (N, t )N1/2 ∼ t2 ∼ tβ, (14)

with β = 2.
Furthermore, we can also obtain z′ from Eq. (11). For 1D

static networks, Eq. (11) is approximated as

K (t ) = t (t + 3)/2 ∼ t δ, (15)

where δ = 2. At t ≈ t×, K (t×) becomes comparable with N .
Thus, we find that t× ∼ N1/2 ∼ Nz′

or z′ = 1/2 for 1D static
networks. These values of β and z′ give α′ = 1. By combining
Eq. (14) with the behavior of K (t ) in the vicinity of t×, we
obtain the modified FSS ansatz, Eq. (8). The exponents ob-
tained analytically agree very well with those obtained from
the numerical simulations (see Fig. 3).

To validate our assumption, we measure sτ (t ) and K (t )
from the numerical simulations. Figure 5(a) shows the mea-
sured sτ (t )′s from the numerical simulations for (N p0, η) =
(1.0, 1.0), when the maximum value of τ reaches τmax =
20 and τmax = 30, respectively. From the data, we find that
sτ (t ) ∼ −τ , which shows a good agreement with Eq. (10).
We also display the obtained K (t ) from the same simulations
in Fig. 5(b) and compare it with the analytic expression (15)
(dashed line). From the least-squares fit of Eq. (15) to the
data, we obtain δ = 1.8 ± 0.2. This value of δ agrees with
the analytic expectation δ = 2 within the estimated error. This
analysis can be directly extended to the case of 2D static
networks.
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FIG. 6. Plot of W (N, t )′s on 2D static networks for (a)
(N p0, η) = (0.1, 0.0) and (b) (N p0, η) = (1.0, 1.0). The solid lines
represent the relations (a) W (N, t ) ∼ t2.5 and (b) W (N, t ) ∼ t2.6.
Insets: Plots of Wsat (N )′s. The solid lines denote (a) Wsat (N ) ∼ N0.32

and (b) Wsat (N ) ∼ N−0.5.

C. Numerical results on 2D static networks

For 2D static networks, we use the square lattice whose
linear dimension is L (N = L2). On 2D static networks, we
find that the behavior of W (N, t ) strongly depends on N p0 and
η. In Fig. 6 we show two limiting cases of W (N, t ) on 2D static
networks. In Fig. 6(a) we display W (N, t )′s for (N p0, η) =
(0.1, 0.0) as an example of the small values of N p0 and η.
When N p0 and η are small, we find that W (N, t ) seems to
satisfy the FSS ansatz, Eq. (3) or Eq. (8), as shown in Fig. 6(a).
By fitting Eqs. (4) and (5) to the data, we obtain β = 2.5 ± 0.2
for t < t× and α = 0.32 ± 0.01 when t > t×.

As an example for large N p0 and η, we display W (N, t )′s
for (N p0, η) = (1.0, 1.0) in Fig. 6(b). When N p0 and η are
large, we find that W (N, t ) initially grows as W (N, t ) ∼ tβ

until competition between clusters arises. At t ≈ t×, small
clusters start being merged into large clusters as a result of
competition. Thus, W (N, t ) decreases and reaches a steady-
state value, Wsat (N ) with α < 0. From the least-squares fit of
Eq. (4) to the data, we find that β � 2.6, which is very close to
the value of β obtained in Fig. 6(a). Furthermore, as shown in
the inset of Fig. 6(b), Wsat (N ) decreases as N increases. From
the data, we obtain α � −1/2, which clearly shows that a
single influencer dominates for large N p0 and η. Note that
α < 0 means that the fluctuation of the information value
vanishes in the limit N → ∞. Therefore, the information
landscape of the HPS model undergoes a transition from the
rough phase to the flat one as we increase N p0 and η. In

FIG. 7. (a) Phase diagram of the HPS model. Dark green (gray)
represents the rough phase and light green (gray) corresponds to the
flat phase. Inset: Plot of η∗ against N p0. The solid line represents the
relation η∗ ∼ (N p0)−1/2. Black circles in panels (b) and (c) denote
the index of the influencer node belonging to the largest cluster at
t for (b) (N p0, η) = (1.0, 0.15) and (c) (N p0, η) = (1.0, 1.0). Blue
(gray) lines represent the evolution of smax/N for N = 400 × 400.

Fig. 7(a) we plot the phase diagram for the observed rough-
ening transition. Here the transition threshold (N p∗

0, η
∗) is

defined as those values at which α = 0 or equivalently α′ =
1/2. The inset of Fig. 7(a) shows that η∗ satisfies another
power-law relation:

η∗ ∼ (N p0)−1/2. (16)

Equation (16) verifies that N p0 is a better control parameter
than p0. If we use p0 as a control parameter, then N p0 → ∞
for a given value of p0(> 0) in the limit N → ∞. Thus, η∗ →
0 by Eq. (16). As a result, we always obtain the flat ordered
phase in the thermodynamic limit if we use p0 as one of the
control parameters.

Figure 7(b) shows the influencer index that belongs to
the largest cluster at t for (N p0, η) = (1.0, 0.15) and the
time evolution of smax/N . Here smax is the size of the largest
cluster. (N p0, η) = (1.0, 0.15) corresponds to the vicinity of
the transition threshold. The data clearly show that there are
metastable states where one influencer maintains dominance
for a sustained period in the steady state. The first metastable
state emerges around t = 1.5 × 105 and is sustained to t ≈
4.5 × 105. This metastable state collapses into small clusters,
causing a sudden drop in smax/N , and another metastable state
emerges around t = 5.2 × 105. Thus, there are jumps between
metastable states in the vicinity of the transition threshold,
as reported in Ref. [13]. However, in the flat phase, we find
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FIG. 8. Scaling collapse of W (N, t )N1/2 with β = 2.5, α′ =
0.82, and z′ = 0.32 for (a) (N p0, η) = (0.1, 0.0) and (b) (N p0, η) =
(0.5, 0.1).

that such jumps between metastable states are observed only
when N is small (which is not shown). As shown in Fig. 7(c),
once a node becomes an influencer in the dominant cluster at
t = τ , it remains the dominant influencer for t > τ when N is
sufficiently large.

When the information landscape is in the rough phase,
we find that W (N, t ) satisfies the modified FSS (8). Fig-
ure 8 shows the scaling collapse of W (N, t ) for (N p0, η) =
(1.0, 0.0) and (0.5,0.1) with Eq. (8). Using the least-squares
fit, we obtain β = 2.5 ± 0.2, α′ = 0.82 ± 0.01, and z′ =
0.32 ± 0.02 in the rough phase, regardless of (N p0, η). As
shown in Fig. 8, W (N, t )′s collapse well into a single curve
with the obtained exponents.

D. Analytic derivation of the exponents for 2D static networks

The obtained exponents can also be analytically derived
based on the same arguments in Sec. IV B. On 2D static
networks, we assume that the cluster following the same in-
fluencer is small and compact. Thus, c in Eq. (10) becomes
c ∼ t − τ , which is proportional to the length of the cluster
boundary. Then sτ (t ) becomes

sτ (t ) ∼ (t − τ )2. (17)

From Eq. (17), the leading order of W (N, t ) scales as

W (N, t ) ∼ t5/2. (18)

Therefore, we obtain β = 5/2, which is very close to the value
of β obtained from the numerical simulations (see Figs. 6

FIG. 9. (a) Plot of Ncls(N ) against N for (N p0, η) = (1.0, 1.0)
(open squares) and (N p0, η) = (1.0, 0.1) (open circles) in the steady
state. The dashed line represents Ncls ∼ const. and the solid line
stands for Ncls ∼ N0.4. Inset: Plot of smax against N for (N p0, η) =
(1.0, 0.1). The solid line denotes smax ∼ N0.72. (b) Plot of P(s) for
(N p0, η) = (1.0, 0.1). The solid line represents P(s) ∼ s0.69. Inset:
Plot of τ (s) against s for N = 400 × 400.

and 8). Since for t < t× the size of the clusters and their
information grow in the same fashion for all (N p0, η), even
in the flat phase we obtain the same value of β [see Fig. 6(b)].

From Eq. (17), we rewrite Eq. (11) as

K (t ) ∼ t3 (19)

for 2D static networks. Thus, we expect that z′ = 1/3 and
α′ = 5/6 in the rough phase on 2D static networks. These
values of z′ and α′ agree very well with those values obtained
from the numerical simulations.

E. Properties of clusters on 2D static networks

In Fig. 9(a) we show the number of clusters Ncls in the
steady state. When the system is in the flat phase [for ex-
ample, (N p0, η) = (1.0, 1.0)], we find that Ncls remains at
some constant value, Ncls ∼ 7, for all N . Thus, the ratio Ncls/N
vanishes when N → ∞. In the flat phase, smax(N ) becomes
smax(N ) � N [see, for example, Fig. 7(c)]. This indicates that,
even though there is a small number of influencers, only one
influencer dominates and most of the nodes follow the same
influencer. Therefore, Wsat (N ) scales as Wsat (N ) ∼ N−1/2.

On the other hand, in the rough phase, Ncls increases as

Ncls(N ) ∼ Nθ , (20)

with θ � 0.4. Note that, even though Ncls grows sublinearly or
Ncls/N → 0 as N → ∞, W (N, t ) satisfies the modified FSS
(8) with α > 0. This can be understood from the nontrivial
cluster properties. As shown in the inset of Fig. 9(a), we find
that smax in the steady state increases as

smax ∼ Nλ, (21)

with λ � 0.7. In the steady state, the lower-bound of smax

approximately satisfies the relation smaxNcls ∼ N . Thus, we
expect that λ + θ � 1. Furthermore, the cluster size distri-
bution P(s) satisfies a power law in the steady state [see
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Fig. 9(b)]:

P(s) = Cs−μ. (22)

Here C is a normalization constant. From the least-squares
fit of Eq. (22) to the data, we obtain μ = 0.7 ± 0.2. Since
μ < 1, smax should be finite or grow sublinearly with N to
satisfy the normalization condition. Equation (21) and the data
in Fig. 9(a) clearly show that smax grows sublinearly as N
increases. Using Eq. (21), we obtain C ∼ N−λ(1−μ). As one
of the simplest assumptions, let the information value of the
cluster of size s, τ (s), scale as

τ (s) ∼ sκ . (23)

To verify the assumption, we measure τ (s) from the numer-
ical simulations. As shown in the inset of Fig. 9(b), we find
τ (s) ∼ s for s � 1. Let n(s) be the number of clusters of
size s, and then n(s) = NclsP(s). Ignoring the fluctuation of
τ (s) and using the continuum approximation, τ̄ and τ 2 in the
steady state are approximated as

τ̄ ≈ Ncls

N

∫ smax

smin

sτ (s)P(s)ds (24)

and

τ 2 ≈ Ncls

N

∫ smax

smin

sτ 2(s)P(s)ds. (25)

From Eqs. (21)–(25), W (N, t ) is approximated as

W (N, t ) = (τ 2 − τ̄ 2)1/2 ∼ N [λ(2κ+1)+θ−1]/2, (26)

for t � t×. Compared to Eq. (9), we obtain the relation

2α′ = λ(2κ + 1) + θ. (27)

Equations (26) and (27) indicate that the nontrivial distribu-
tion of s can cause the rough phase, which is characterized by
α > 0.

The values of θ , μ, and κ obtained from the simulations
overestimate the value of α′. This discrepancy might originate
from the crude approximation in Eqs. (24) and (25) which
ignores the fluctuation of τ (s). However, Eq. (27) quantita-
tively explains that the nontrivial distribution of s makes the
information morphology rough, even though the number of
influencers sublinearly grows.

V. SUMMARY

In order to understand how the competition between infor-
mation affects the diversity of the information, we investigate
the HPS model in 1D and 2D static networks by mapping the
information value into the height of the interface. Thus, the
width W (N, t ) quantifies the information diversity. From the
numerical simulations on both 1D and 2D static networks, we
find that W (N, t ) does not satisfy the usual Family-Vicsek FSS
ansatz, (3). Furthermore, W (N, t ) grows with an anomalously
large growth exponent, β, for the initial transient period. From
the analytic derivation of W (N, t ) we find that the constant
and small number of information creation and the recruit-
ment of followers are two main processes responsible for the
anomalously large β. The modified dynamic exponent z′ can
be also obtained from the same argument. The analytically
obtained exponents agree very well with the numerical results
for 1D and 2D static networks. The analytic derivation, based
on these two main processes, also reveals that W (N, t ) of the
information landscape in the HPS model deviates from the
well-known Family-Vicsek FFS ansatz and instead follows the
modified FSS ansatz, Eq. (8).

In addition, we find that the information landscape on
1D static networks is always rough, regardless of the value
of the control parameters (N p0, η). However, for 2D static
networks, we find that the information landscape undergoes
the roughening transition as N p0 and/or η decreases. From
the detailed analysis of the numerical simulations, we also find
that the metastable state reported in Ref. [13] emerges only in
the vicinity of the transition threshold (N p∗

0, η
∗).

As a final remark, the HPS model on complex networks
can have practical importance because the topologies of many
social interaction networks are suitably described by complex
networks. Unlike the low-dimensional cases, there are many
dangling ends in the random or scale-free networks. Due to
these dangling ends, the boundaries of small clusters which
have dangling ends cannot be merged into a large one. The
spread of information through the recruiting process is limited
by such small clusters having dangling ends. Therefore, we
expect that the flattening of the information landscape hardly
occurs. The details will be published elsewhere [25].
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