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Majority-vote model with degree-weighted influence on complex networks
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We study the phase transition of the degree-weighted majority vote (DWMV) model on Erdős-Rényi networks
(ERNs) and scale-free networks (SFNs). In this model, a weight parameter α adjusts the level of influence of
each node on its connected neighbors. Through the Monte Carlo simulations and the finite-size scaling analysis,
we find that the DWMV model on ERNs and SFNs with degree exponents λ > 5 belongs to the mean-field Ising
universality class, regardless of α. On SFNs with 3 < λ < 5 the model belongs to the Ising universality class
only when α = 0. For α > 0 we find that the critical exponents continuously change as α increases from α = 0.
However, on SFNs with λ < 3 we find that the model undergoes a continuous transition only for α = 0, but
the critical exponents significantly deviate from those for the mean-field Ising model. For α > 0 on SFNs with
λ < 3 the model is always in the disordered phase.

DOI: 10.1103/PhysRevE.103.022302

I. INTRODUCTION

Phase transitions of macroscopic systems have been an
important research subject in statistical physics [1]. Spin sys-
tems with local interactions such as the Ising model have
been fundamental models to study phase transitions and crit-
ical phenomena. The spin models also play an important
role to understand social collective behaviors such as opin-
ion formation [2]. The models for opinion dynamics based
on interacting spin systems show rich interesting phenomena
having deep relationships with a wide range of disciplines
from physics to sociology and economics [3–5].

The majority-vote (MV) model has been a popular model
to investigate the dynamical properties of social phenomena
on regular lattices or complex networks [6–8]. The MV model
is a nonequilibrium model with up-down symmetry, which
shows an order-disorder transition as changing the noise pa-
rameter. On low-dimensional regular lattices, the MV model
is known to belong to the Ising universality class [9–11]. This
agrees with the Grinstein’s conjecture that the nonequilibrium
stochastic systems with up-down symmetry belong to the
Ising universality class in equilibrium [12].

Recently, the complex network theory has provided a very
useful framework for describing many nonregular structures
observed in nature [13,14]. Furthermore, models based on
such complex networks also have provided theoretical and
empirical methods to understand various social phenomena
such as information spreading [15], epidemic outbreak [16],
propagation of innovation [17], and opinion dynamics [18].
The MV model has been also studied on small-world
networks [19,20], random networks [21,22], scale-free net-
works [23,24], and hyperbolic networks [25]. These studies
have shown that the underlying topology affects the transition
nature of the MV model and changes the universality class. As
an extension of the MV model, the multistate MV model on
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regular lattices [26] and complex networks [27–29] are also
studied.

The basic assumption of the MV model and its variants
is that each agent has the same level of influence on neigh-
boring agents. However, recent studies on social information
propagation have revealed that there are superspreaders or su-
perinfluencers on social networks [30]. The superinfluencers
have strong ability to affect other people. Thus, they transfer
their opinion to more people than normal agents. In order to
incorporate the effect of superinfluencers, the MV model with
strong opinions [11] was studied on regular lattices. In the MV
model with strong opinions, the agents with strong opinion
are represented by the superspins. Therefore, the agents with
strong opinion denoted by the superspin have larger value
of spin than that for normal agents. Numerical simulations
showed that the critical noise, at which the order-disorder tran-
sition takes place, depends on the concentration of superspins.
However, the model belongs to the Ising universality class as
the Grinstein’s conjecture.

In social networks, the centrality measures are widely used
as a metric for judging the impact of a node on social phe-
nomena [13]. The degree centrality is the simplest centrality
among others. Although the degree centrality is the simple
one, it is intuitive and illuminating. For example, in citation
networks, the highly connected nodes are influential research
papers [13]. In epidemiology, the hubs or superspreaders
play a big role in disease spreading [16,31]. These examples
clearly show that the degree centrality becomes a significant
role in spreading dynamics on networks. Furthermore, many
centrality measures are positively correlated to each other in
general [32–34] including the degree centrality. For example,
the random walk centrality of a node is linearly proportional
to the degree of the node [35]. Thus, it is natural to assume
that the influence of a node is proportional to the degree of the
node in opinion dynamics.

In this paper, we introduce a degree-weighted MV
(DWMV) model to account for more realistic situations in
which the level of influence of a node to its neighborhood is
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proportional to the degree centrality. Thus, a node with a large
degree can have more influence on its neighbors than a node
with a small degree in the DWMV model. From Monte Carlo
(MC) simulations, we find that the DWMV model undergoes
an order-disorder transition and the critical noise parameter
depends on the underlying topology. In particular, the critical
exponents vary continuously as we change the degree-weight
parameter when the underlying topology is heterogeneous.
This indicates that the universality class of the DWMV model
depends not only on the underlying topology but also on the
level of influence.

The paper is organized as follows. In Sec. II we define
the DWMV model. Section III provides results of the nu-
merical analysis on random networks and scale-free networks.
Section IV is the concluding remarks.

II. MODEL

The definition of the DWMV model resembles the orig-
inal isotropic MV model. In the DWMV model, we assign
a spin variable σi ∈ {−1,+1} to each node i in the network
with N nodes. The σi represents the opinion of node i. At
each step, a node i is randomly selected and determines
the degree-weighted majority of the neighboring nodes. The
degree-weighted majority of node i, Si, is defined as

Si =
N∑
j

ai jσ j[1 + (k j − 1)α], (1)

where k j is the degree of node j and α ∈ [0, 1] is the
degree-weight parameter, which adjusts the level of additional
influence. ai j is an element of the adjacency matrix, which
is defined as ai j = 1 if the nodes i and j are connected and
ai j = 0 otherwise. Then the spin of the selected node i is
flipped with the probability

w(σi ) = 1
2 [1 − (1 − 2q)σisgn(Si )], (2)

where sgn(x) = +1, 0,−1 in case x > 0, x = 0, and x <

0, respectively. When sgn(Si ) = 0, σi = ±1 is randomly
assigned. Therefore, the selected node follows the degree-
weighted majority state with the probability 1 − q, or adopts
the opposite state with the probability q. The probability q
is called the noise parameter, which plays a similar role of
temperature in the equilibrium spin models. For α = 0, the
DWMV model recovers the original isotropic MV model.
However, when α > 0, the opinion of a node can be deter-
mined only by a single neighbor with a large k due to the
degree-weighted influence.

To investigate the critical behavior of the model, we mea-
sure the magnetization, M(q, N ), the susceptibility, χ (q, N ),
and the Binder’s fourth-order cumulant, U (q, N ). These quan-
tities are defined as

M(q, N ) = 〈〈m〉t 〉c, (3)

χ (q, N ) = N
[〈〈m2〉t − 〈m〉2

t

〉
c

]
, (4)

U (q, N ) = 1 −
〈 〈m4〉t

3〈m2〉2
t

〉
c

, (5)

where m = |∑N
i=0 σi/N |. 〈· · · 〉t and 〈· · · 〉c denote the tempo-

ral averages measured in the steady state and the configura-
tional averages, respectively.

For each value of α we perform MC simulations on net-
works with N = 10000, 20000, 40000, 80000, 160000 for
ERNs and SFNs with λ > 3. For SFNs with λ < 3, we use
N = 10000 ∼ 320000 due to the strong finite-size effect.
In our simulations, time is measured in Monte Carlo steps
(MCSs). At each unit MCS there are N trials of spin flipping,
i.e., each node tries to update its state once on average. The
completely ordered configuration in which all nodes have
the same value of spin is used as an initial condition. Since
we find that the DWMV model is in the steady state when
t = 104 MCSs for N = 320000 on ERNs and SFNs, we dis-
card the initial 5 × 104 MCSs in the following simulations.
The time averages are obtained from the next 104 MCSs.
For all parameter sets (α, q), the configurational averages are
obtained from at least 300 network realizations. In the critical
regime, at least 1000 network realizations are used to obtain
the configurational averages due to large fluctuations.

Two different types of underlying networks, Erdős-
Rényi networks (ERNs) and scale-free networks (SFNs) are
used [13]. ERNs are characterized by a Poisson degree dis-
tribution p(k) = 〈k〉ke−〈k〉/k!. On the other hand, SFNs have
a power-law degree distribution p(k) ∼ k−λ, where λ is the
degree exponent. To generate ERNs and SFNs with various λ,
we use the static model [36]. Thus, the networks have the natu-
ral degree cutoff, kmax, which scales as kmax ∼ N−1/(1−λ) [14].
In the following numerical simulations, we set the mean de-
gree 〈k〉 = 10 for both networks.

III. RESULTS

A. Erdős-Rényi networks

In Figs. 1(a) and 1(b) we show the measured U (q, N ) for
α = 0 and α = 1 on ERNs with N = 10000 ∼ 160000. The
critical noise, qc, for a given value of α is estimated as the
point at which the curves for different N intersect each other.
From the data, we obtain qc = 0.3004 ± 0.0004 for α = 0 and
qc = 0.3008 ± 0.0004 for α = 1. We also measure qc’s for
other values of α using U (q, N ). From the obtained qc’s we
plot the phase diagram of the DWMV model in the inset of
Fig. 1(b). As shown in the phase diagram, the values of qc for
each α are identical within the estimated errors for 0 � α � 1.
We also measure M(q, N ) and χ (q, N ) on ERNs for various
values of α. To obtain the critical exponents we use the finite-
size scaling ansatz [1,37]

M(q, N ) ∼ N−β/ν̄M̃(εN1/ν̄ ), (6)

χ (q, N ) ∼ Nγ /ν̄ χ̃ (εN1/ν̄ ), (7)

U (q, N ) ∼ Ũ (εN1/ν̄ ), (8)

where ε = q − qc and M̃, χ̃ , and Ũ are universal scaling
functions. β, γ , and ν̄ are the critical exponents for the or-
der parameter, the susceptibility, and the correlation volume,
respectively. The correlation volume exponent is defined as
ν̄ = duν, where du is the upper critical dimension and ν is the
correlation length exponent [38]. ν̄ can be obtained from the
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FIG. 1. Plot of U (q, N ) on ERNs with various N for (a) α = 0
and (b) α = 1. The vertical lines represents the estimated critical
noise, (a) qc = 0.3004 and (b) qc = 0.3008. Inset: phase diagram of
DWMV model on ERNs. “O” and “D” represent the ordered phase
and the disordered phase, respectively.

scaling relation

qc(N ) = qc + bN−1/ν̄ , (9)

where b is a constant and qc(N ) is the value of q at which
χ (q, N ) has the maximum value. Alternatively, ν̄ is also ob-
tained from the derivative of U (q, N ) [25],

|dU (q, N )/dq| ∼ N1/ν̄Ũ ′(εN1/ν̄ ). (10)

By using Eqs. (6)–(10), we obtain 1/ν̄ = 0.5, β/ν̄ = 0.25,
and γ /ν̄ = 0.5 on ERNs, which are exactly the same with
those for the mean-field Ising model [1]. In Fig. 2, we show
that M(q, N ) and χ (q, N ) on ERNs with various N for α = 1
collapse into the corresponding universal scaling functions
with the obtained exponents. For other values of α(∈ [0, 1])
we obtain the same exponents (which is not shown). These
results clearly show that the DWMV model on ERNs belongs
to the Ising universality class, regardless of α.

B. Scale-free networks with λ > 5

Since SFNs with λ → ∞ is generally regarded as an ex-
ponential random network, many physical systems on SFNs
with large λ show the same behavior as on ERNs. For
example, the Ising model on SFNs with λ > 5 shows the
mean-field behavior [38,39]. On the other hand, when λ < 5,

FIG. 2. Data collapse for (a) M(q, N ) and (b) χ (q, N ) when α =
1 on ERNs with the critical exponents 1/ν̄ = 0.5, β/ν̄ = 0.25, and
γ /ν̄ = 0.5.

a nontraditional singularity emerges. Similarly, the DWMV
model shows a crossover from a mean-field to a nontradi-
tional behavior at λ 	 5. The data in Fig. 3 shows the scaling
collapse for χ (q, N ) and M(q, N ) when λ = 5.2 and α =
1 using qc = 0.2948 ± 0.0004, 1/ν̄ = 0.47 ± 0.04, γ /ν̄ =
0.57 ± 0.03, and β/ν̄ = 0.21 ± 0.04. These values of expo-
nents are quite close to those for the mean-field Ising model.
Furthermore, we find that all the critical exponents do not
depend on α for λ > 5 as in the case on ERNs. This shows
that the DWMV model on SFNs with λ > 5 also belongs to
the Ising universality class, regardless of the value of α. This
implies that there is no superinfluencer or opinion leader in
the DWMV model on homogeneous networks if the level of
the influence is proportional to the degree centrality.

C. Scale-free networks with 3 < λ < 5

Unlike on ERNs or SFNs with λ > 5, the DWMV model
on SFNs with λ < 5 does not belong to the Ising universality
class when α > 0. Due to the heterogeneity of degree in
SFNs with 3 < λ < 5, qc is significantly affected by α even
for a very small value of α. As an example, we show the
measured U (q, N ) on SFNs with λ = 3.7 for α = 0.01 in
Fig. 4(a). From the data we obtain qc = 0.3221 ± 0.0004.
Using U (q, N ) for other values of α, we also estimate qc’s
for each α on SFNs with λ = 3.7. The obtained qc decreases

FIG. 3. Data collapse for χ (q, N ) on SFNs with λ = 5.2, qc =
0.2948, 1/ν̄ = 0.47, γ /ν̄ = 0.57 when α = 1. Inset: Data collapse
for M(q, N ) with β/ν̄ = 0.21.
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FIG. 4. (a) Plot of U (q, N ) on SFNs with λ = 3.7 for α = 0.01
and N = 10000 ∼ 160000. Vertical line represents the intersection
of U (q, N )’s, from which qc = 0.3221 is estimated. (b) Phase dia-
gram for SFNs with λ = 3.7.

monotonically as α increases as shown in Fig. 4(b). On SFNs
with 3 < λ < 5 if a node is connected to a node of large
k, then the state of the node is substantially affected by the
state of the node of the large k when α becomes large. This
means that if the state of the large k node is changed then the
neighboring nodes also follow the decision of the large k node.
Thus, the node of large k easily becomes the super-influencer
when α is large. If there are more than one superinfluencer
with different opinions, then there can be a competition be-
tween them. Due to the competition, the disordered phase
is more favorable than the ordered phase even for relatively
small q as α increases. As a result, qc decreases as α increases.
Similar behavior was observed in the strong opinion MV
model [11] and the zero-temperature Glauber dynamics on
SFNs [40]. In order to obtain 1/ν̄, we use Eq. (9). The data in
the inset of Fig. 5 shows qc − qc(N ) for SFNs with λ = 3.7

FIG. 5. Plot of maximum of |dU (q, N )/dq| on SFNs (λ = 3.7)
for various α’s. The solid line corresponds to |dU (q, N )/dq| ∼ N0.48

and dashed line denotes |dU (q, N )/dq| ∼ N0.34. Inset: Plot of qc −
qc(N ) against N for α = 0.01. The solid line represents the relation
qc − qc(N ) ∼ N−0.39.

FIG. 6. Plot of (a) M(qc, N ) and (b) χ (qc, N ) on SFNs with λ =
3.7 for various values α. (a) The solid line represents M ∼ N−0.26 and
the dashed line denotes M ∼ N−0.11. (b) The solid line corresponds
to χ ∼ N0.49 and the dashed line represents χ ∼ N0.74. Data collapse
for (c) M(q, N ) and (d) χ (q, N ) with 1/ν̄ = 0.39, β/ν̄ = 0.17, and
γ /ν̄ = 0.64 when α = 0.01.

and α = 0.01 as an example. From the best fit of the data
to Eq. (9) we obtain 1/ν̄ = 0.39 ± 0.03. However, when α

is large, qc − qc(N ) becomes very small, and it is hard to
obtain the accurate value of 1/ν̄ using Eq. (9). Thus for a
better estimation of 1/ν̄ we use Eq. (10). The data in Fig. 5
shows the maximum of |dU (q, N )/dq|, |dU (q, N )/dq|max,
as a function of N for various values of α [25]. From the
data of |dU (q, N )/dq|max for α = 0.01, we obtain 1/ν̄ =
0.39 ± 0.03, which agrees with 1/ν̄ estimated from Eq. (9).
When α = 0 we obtain 1/ν̄ = 0.48 ± 0.02 using Eq. (10).
This value of 1/ν̄ is identical with that of the mean-field
Ising model within the estimated error. As α increases, 1/ν̄

decreases continuously, and we obtain 1/ν̄ = 0.34 ± 0.07 for
α = 1. In Fig. 6(a) M(q, N ) at qc on SFNs with λ = 3.7
for various values of α is displayed. For α = 0 we obtain
β/ν̄ = 0.26 ± 0.03 using the relation M(qc, N ) ∼ N−β/ν̄ . The
obtained value of β/ν̄ is identical with that of the mean-field
Ising model within the estimated error. However, if α 
= 0
then β/ν̄ significantly deviates from β/ν̄ = 0.25, i.e., as α

increases we find that β/ν̄ continuously decreases and reaches
β/ν̄ = 0.11 ± 0.03 for α = 1. We find the similar behavior
for χ (q, N ). For α = 0 we obtain γ /ν̄ = 0.49 ± 0.04 from
the relation χ (qc, N ) ∼ Nγ /ν̄ , which is the same with that of
the mean-field Ising model within the estimated error. As α

increases, we find that γ /ν̄ continuously increases and reaches
γ /ν̄ = 0.74 ± 0.06 for α = 1 [see Fig. 6(b)]. In Figs. 6(c)
and 6(d) we show the scaling collapse for M(q, N ) and
χ (q, N ) with the obtained exponents for λ = 3.7 and α =
0.01, as an example. Furthermore, we find that the obtained
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FIG. 7. Plot of β/ν̄ (squares) and γ /ν̄ (circles) against α on
SFNs with λ = 3.7 (filled symbols) and λ = 3.4 (open symbols). The
horizontal lines denote the mean-field Ising exponents, β/ν̄ = 0.25
(dotted line). and γ /ν̄ = 0.5 (dashed line)

β, γ , and ν̄, satisfy the hyperscaling relation [1,29]

2β/ν̄ + γ /ν̄ = 1, (11)

for all values of α.
We also measure M(q, N ) and χ (q, N ) for other values of

λ (3 < λ < 5), and find that they show the similar behavior as
on SFNs with λ = 3.7. For example, we display the measured
β/ν̄ and γ /ν̄ as a function of α for both λ = 3.4 and λ = 3.7
in Fig. 7. The obtained exponents satisfy the hyperscaling
relation, Eq. (11), and clearly shows that the critical exponents
continuously approaches to those for the mean-field Ising
model, β/ν̄ = 0.25, and γ /ν̄ = 0.5, as α → 0. In addition,
these critical exponents also depend on λ as shown in Fig. 7.

From these results, we find that the DWMV model belongs
to the Ising universality class when α = 0, which corresponds
to the isotropic MV model. However, if the degree-dependent
weight is introduced (α > 0) then the model does not be-
long to the Ising universality class. Furthermore, the critical
exponents of the DWMV model on SFNs with 3 < λ < 5
continuously change from those of the mean-field Ising model
as α increase from α = 0.

D. Scale-free networks with λ < 3

The phase transition of the isotropic MV model on SFNs
with λ < 3 is rarely studied, and typically focused on the
dependency of qc on the underlying topology [24]. The phase
transition of the DWMV model on SFNs with λ < 3 is sub-
tle. For λ < 3, the critical behavior of the DWMV model
is significantly affected by hubs. For α = 0, we obtain qc =
0.381 ± 0.004, 1/ν̄ = 0.31 ± 0.04, β/ν̄ = 0.25 ± 0.05, and
γ /ν̄ = 0.51 ± 0.04 from the finite-size scaling [for example,
see the insets of Figs. 8(a) and 8(b)]. In Ref. [24], 1/ν̄ for
the isotropic MV model is also measured through MC simula-
tions. By using the interpolation, we expect that 1/ν̄ 	 0.22
from the data provided by Chen et al. in Ref. [24]. The
obtained value of 1/ν̄ in our simulations seems to be slightly

FIG. 8. Data collapse for (a) M(q, N ) and (b) χ (q, N ) on
SFNs with λ = 2.7 and α = 0. We use qc = 0.381, 1/ν̄ = 0.31,
β/ν̄ = 0.25, and γ /ν̄ = 0.51. Insets: Plot of (a) M(qc, N ) and
(b) χ (qc, N ) against N . The lines denote (a) M(qc, N ) ∼ N−0.25 and
(b) χ (qc, N ) ∼ N0.51.

larger than that expected by Chen et al. [41]. Using the ob-
tained exponents we find that M(q, N ) and χ (q, N ) collapse
into the universal scaling functions as shown in Figs. 8(a)
and 8(b). In contrast to the case of α = 0, when α > 0 the
obtained M(q, N ) and χ (q, N ) do not satisfy the finite-scaling
ansatz, Eqs. (6)–(10). In Fig. 9(a) we display M(q, N ) for
α = 0.001 measured on SFNs with λ = 2.7. The data shows
that there seems to be a phase transition from the ordered
phase to the disordered one as q increases. However, we find
that M(q, N ) systematically decreases as N increases in the
ordered regime, regardless of the values of α(> 0) [see the
inset of Fig. 9(a)]. In order to find the asymptotic behavior
of M(q, N ) we define the difference in the magnetization as

N = M(q, N/2) − M(q, N ). The data in Fig. 9(b) shows the
obtained 
N for α = 0.001 and q = 0.02 in the log-linear
plot. The data shows that 
N grows logarithmically as N
increases. This means that M(q, N ) logarithmically vanishes
as N increases. Therefore, we expect that M(q, N ) → 0 in the
limit N → ∞. However, due to the slow logarithmic growth
of 
N , we cannot observe the asymptotic value M(q,∞) =
0 through the finite-size simulations. When we increase α,
we find slightly different behavior of 
N [see, for example,
Fig. 9(c)]. As α increases, we find that 
N seems to decrease.
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FIG. 9. (a) M(q, N ) on SFNs with λ = 2.7 when α = 0.001.
(inset) linear-log plot of (a) for q ∈ [0.26, 0.34]. (b) Plot of 
N

against N for α = 0.001 and q = 0.02. (c) Plot of 
N against N for
α = 0.5 and q = 0.02. Dashed line: y 	 0.0006.

However, from an extrapolation of the data, we expect that

N → 0.0006 (>0) in the limit N → ∞. This also indicates
that M(q, N ) is expected to be vanished in the thermodynamic
limit.

IV. SUMMARY

In this study, we investigate the phase transition of the
DWMV model on complex networks. The state of each node
is determined by the degree-weighted majority of the con-
nected neighbors with the probability 1 − q, while it takes the
minority state with the probability q. The weight parameter
α adjusts the level of the degree-weighted influence on each
node. By performing extensive Monte Carlo simulations, we
find that the DWMV model undergoes an order-disorder tran-
sition on ERNs and SFNs with λ > 3. Furthermore, through
the finite-scaling analysis on ERNs and SFNs with λ > 5, we
find that the model belongs to the mean-field Ising universality
class, regardless of the value of α. This result agrees with
Grinstein’s conjecture [12] as in the MV model with strong
opinion [11]. On the other hand, on SFNs with 3 < λ < 5,
the model belongs to the mean-field Ising universality class
only when α = 0. For α > 0, we find that qc and the critical
exponents continuously change as α increases.

On SFNs with λ < 3 the transition is subtle. For α = 0,
we find that the DWMV model undergoes a phase transi-
tion. However, the obtained exponents significantly deviate
from those for the mean-field Ising model. Furthermore, even
though we observe that the M(q, N ) > 0 for small q and
α > 0 on finite-size networks with λ < 3, by measuring 
N

we find that M(q, N ) decreases logarithmically as N increases.
Thus, the ordered phase should disappear in the thermody-
namic limit for α > 0 on SFNs with λ < 3. The results also
show that if the interaction topology between individuals can
be approximated by SFNs with λ < 5, the one who has a large
degree can play a significant role in opinion formation.
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