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Origin of the log-normal popularity distribution of trending memes in social networks
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We study the origin of the log-normal popularity distribution of trending memes observed in many real social
networks. Based on a biological analogy, we introduce a fitness of each meme, which is a natural assumption
based on sociological reasons. From numerical simulations, we find that the relative popularity distribution of
the trending memes becomes a log-normal distribution when the fitness of the meme increases exponentially.
On the other hand, if the fitness grows slowly, then the distribution significantly deviates from the log-normal
distribution. This indicates that the fast growth of fitness is the necessary condition for the trending meme.
Furthermore, we also show that the popularity of the trending topic grows linearly. These results provide a clue
to understand long-lasting questions, such as what causes some memes to become extremely popular and how
such memes are exposed to the public much longer than others.
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I. INTRODUCTION

On-line social media grows at an explosive rate. Through
online social media hundreds of millions of people are ex-
posed to different cultural entities such as ideas, news, and
technology. Such a cultural entity is called a meme. The term
meme was first coined by Dawkins to represent a cultural
analogy with genes [1]. When such cultural entities or memes
spread over a society, they evolve via replication and mutation
in human culture [2], which resembles the evolution of genes
in biological environments. Uncovering various dynamical
and statistical properties of meme spreading is very important
to understand many social phenomena and is also crucial
for possible applications. For example, identifying influential
nodes and understanding their dynamical behavior in social
networks [3,4] can be effectively applied to viral marketing
and it is closely related to interesting physical processes or
phenomena such as the avalanche process and critical phe-
nomena in statistical mechanics.

Besides replication and mutation, memes also compete
with each other to get our attention. Only a small number
of memes can survive and acquire a large popularity through
the competition, but most memes disappear without attracting
much attention. Therefore, how and why only a small number
of memes can survive and acquire a large popularity are
very interesting questions in social phenomena. Recent avail-
able big data produced by various online social media have
provided some clue to understand the intriguing phenomena
[4–8]. In these studies, the popularity of the meme is generally
measured as the total number of times the specific meme
is exposed (or the total number of reposts) through online
social media. Based on the empirical data analysis, it has
been shown that the meme popularity distribution is well
described by a heavy-tailed or power-law distribution, which
resembles critical phenomena in statistical physics. Possible
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origins of the criticality have been suggested to be the limited
attention and underlying topology [9], or competition-induced
criticality [10]. More recently, it has been uncovered that the
criticality in meme population distribution is originated from
the balance between innovation of a new meme and extinction
of old memes. The resulting power-law distribution is quite
robust, regardless of the underlying structure [11].

On the other hand, the relative popularity distributions of
the trending topics of Twitter [12] and digg [13] have been
investigated. Here, the trending topics mean the memes of
large popularity at a given time. Unlike the distribution of
popularity for all memes, the relative popularity distribution
of trending topics is well approximated by the log-normal
distribution [14,15]. Since the central limit theorem states
that the probability of the sum of independent and identically
distributed random variables becomes Gaussian, the logarithm
of relative popularity obtained from the multiplicative process
can be described by a log-normal distribution. Furthermore,
the empirical data show that the (relative) popularity grows
linearly in time but the growth is eventually curtailed, which
suggests that the interest in a specific topic decays as time
increases. Thus, stochastic models based on the multiplicative
process with decaying novelty were suggested to explain the
empirically observed behavior of the relative popularity for
trending memes [14,15].

However, the log-normal distribution is observed only for
the trending memes, which is still in contrast with the fat-
tailed or power-law distribution obtained from all memes.
Furthermore, it is still not clearly understood what causes
some memes to become extremely popular, or how such topics
are exposed to the public longer than others. A study on the
contextual content of memes showed that the uniqueness of
memes is crucial for the occurrence of long-lasting memes
with large popularity [16]. Thus, it is natural to assume that
each meme has a different level of interest depending on
its contents. For example, people have a high interest in the
political policies of the U.S., but only a few people have an
interest in the lunch menu of the cafeteria in a university.
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The existence of such different levels of interest in memes
indicates that each meme can have its own quality value. The
interplay among the intrinsic quality, the limited attention,
the innovation rate, and the meme popularity and diversity
was studied [17]. The level of interest of each meme in a
social environment resembles the fitness of a species or a gene
in biological systems [18]. Therefore, in order to investigate
the possible origin of the emergence of trending memes with
extreme popularity and to study the origin of the log-normal
distribution of relative popularity of trending memes, we
introduce a generalized meme competition model with fitness.
From the numerical simulations of the model, we show that
the time dependent fitness plays an important role for the
emergence of high popularity memes. The time dependence
of the fitness reflects the inclination that the trending meme
draws more attention from society as time goes on. Moreover,
the model also clearly provides the condition for the log-
normal relative popularity distribution of trending memes and
the linear growth of popularity, which is observed in the
empirical data [14,15].

II. MODEL

In order to investigate the origin of the log-normal distribu-
tion of relative popularity for trending memes, we introduce a
meme propagation model with fitness (MPMF). The MPMF is
similar to the competition-induced criticality model suggested
by Gleeson et al. [10], but each meme has its own fitness in
the model. In the MPMF each node (or agent) has a screen.
The screen has the capacity for only one meme, and a meme
of the current interest of the node is displayed on the screen.
At t = 0, we start from a network of N nodes. Every meme α

at the time t has its own fitness fα (t ). In the model, either the
propagation process or the innovation process is taken at each
time step. In the propagation process, a node i is selected with
the probability

�i(t ) = fi(t )∑N
j=1 f j (t )

, (1)

where fi(t ) is the fitness of the meme on the node i. Then, the
meme on i propagates to all ki connected nodes to i, where
ki is the degree of node i. When the meme propagates to ki

connected neighbors, the memes on the screens of connected
neighbors are replaced by the meme of node i with fi(t ). And
the popularity of the meme increases by 1. In the innovation
process, a new meme with a fitness f ∗ is generated on a
randomly selected node.

Since the topological features of many social networks are
characterized by the concepts of “small-world” and “scale-
free” [19], we assume that the underlying topology is a scale-
free network (SFN). Even though real social networks are
directed in general, it has already been shown that the di-
rectedness does not affect the main result [11]. Therefore, we
use undirected SFNs to represent the structure of underlying
social networks. A SFN is characterized by the power-law
degree distribution, P(k) ∼ k−γ . To generate the SFN with
tunable γ , we use a static SFN model introduced by Goh
et al. [20]. All the quantities are averaged over 100 network
realizations and 1000 independent runs on each network. We
mainly use the SFNs with N = 104, 〈k〉 = 10.4, and γ = 2.5

in the subsequent simulation studies. We check that the main
conclusions of our paper are nearly identical regardless of N ,
〈k〉, or γ . Furthermore, we confirm that a different underlying
topology like the small-world networks [21] does not change
the results as presented in Appendix A.

III. THE BEHAVIOR OF TRENDING MEMES

In order to investigate the origin of the log-normal distri-
bution of relative popularity for trending memes [14,15], we
consider our model under the following conditions. Initially,
we set the fitness of the meme on each node to be fi(0) = 1. At
t = 0, we take an innovation process, in which a meme with
the fitness f ∗(0) (� 1) is generated on a randomly selected
node j. The fitness f ∗(t ) evolves as

f ∗(t ) = F (t ) f ∗(t − 1), (2)

where F (t ) is some function that determines the time evolu-
tion of the fitness of the meme. The functional form will be
discussed later. Equation (2) reflects the inclination that the
trending meme draws more attention as time goes on. On the
other hand, the fitness of the other meme remains at a constant,
f (t ) = 1, for t � 0. Thus, only the meme with f ∗(t ) is a
special meme which can evolve into a trending meme, while
the other memes play the role of background memes with
average fitness. Since we are interested only in the relative
popularity for the trending memes, we focus on the relative
popularity of the meme with fitness f ∗(t ).

The innovation of the background memes with average
fitness [or f (t ) = 1] does not change �i(t ) in Eq. (1) for
propagation of the meme with f ∗(t ) if the innovation of a
background meme would not change its fitness. Furthermore,
the types of background memes with average fitness [or
f (t ) = 1] do not affect �i(t ) for the propagation of the special
meme or the relative popularity of the meme with f ∗(t ). In
addition, due to the relatively rare occurrence of the meme
with large f ∗(0), we only take the propagation processes for
t > 0.

The popularity of the innovated meme at t , n(t ), is defined
as the cumulative number of propagations (or repostings) up
to t . The relative popularity of the innovated meme, C(t2, t1),
(t2 > t1), is defined as [14]

C(t2, t1) = n(t2)/n(t1). (3)

To find how popularity of a certain meme grows in time
and finally becomes a trending meme, we only consider the
case that f ∗(t ) grows during the considered time period. The
popularity is measured only for the memes which survive after
a given initial transient period (t > 50). We obtain the relative
popularity distribution, P(C), from the 105 survival samples
by using 100 network realizations and 1000 independent runs
on each network. In Fig. 1, P(C), the probability distribution
of C(t2, t1) of the meme with f ∗(0) = 1 and F (t ) = A [(A >

1)] measured from simulations is shown. If the propagation
occurs n times then f ∗(t + n) = An f ∗(t ). In Fig. 1 we display
the measured P(C)s with A = 1.20, as an example. The ob-
tained P(C) satisfies the log-normal distribution

P(C) = 1

C
√

2πσ 2
exp

{
− (ln C − ln C0)2

2σ 2

}
. (4)
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FIG. 1. Plot of P(C)’s for the meme with f ∗(0) = 1 and F (t ) =
A = 1.20 for (a) C(200, 100), (b) C(700, 100), and (c) C(1500, 100).
Curves denote the log-normal function (4) with (a) C0 = 3.6 and σ =
0.04, (b) C0 = 10.8 and σ = 0.08, and (c) C0 = 19.6 and σ = 0.09.

For example, we obtain C0 � 3.6 and σ � 0.04 for
C(200, 100) [Fig. 1(a)], C0 � 10.8 and σ � 0.08
for C(700, 100) [Fig. 1(b)], and C0 � 19.6 and σ � 0.09
for C(1500, 100) [Fig. 1(c)] from the best fit of the data to
Eq. (4). The results for the meme with exponentially growing
fitness clearly explain the observed log-normal distribution
of trending memes in a real social network [14]. As we
increase t2/t1, we find that the peak of P(C) decreases, and
the distribution becomes broader. As the ratio t2/t1 becomes
larger, some memes with fitness f ∗ disappear due to the
accumulated effects of the propagation of the background
memes. Thus, the height of the peak decreases as t2/t1
increases.

In Figs. 2(a) and 2(b) we display P(C) for the meme with
f ∗(0) = 100 and 10 000, and A = 1.2, respectively. The data
in Figs. 2(a) and 2(b) clearly show that the width of the peak
of P(C) becomes narrow as f ∗(0) increases. This can be
easily understood from the limiting case of f ∗(0) → ∞. In
this limit, only the innovated (trending) meme with f ∗(t ) is
selected to propagate to the connected neighbors at each time
step. Thus, the popularity, n(t ), of the innovated meme grows
as n(t ) ∝ n(0)t . Since n(t ) grows linearly, the relative pop-
ularity of the meme grows as C(t2, t1) = n(t2)/n(t2) ∼ t2/t1.
Thus, P(C) for the meme with high fitness f ∗(0) has a delta-
function-like peak at Cpeak when f ∗(0) is sufficiently large
as shown in Figs. 2(a) and 2(b), and Cpeak scales as Cpeak ∼
t2/t1 [see Fig. 2(c)]. The linear growth of the popularity of
the trending meme has been observed in the empirical data
[14]. Therefore, these results strongly suggest that the linearly
growing popularity of trending memes [14] is originated from
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FIG. 2. Plots of P(C) for the meme with (a) f ∗(0) = 100 and
(b) f ∗(0) = 10 000. (c) Plots of Cpeak(t2, t1) against t2/t1 with
t1 = 100. The solid lines represent the relation Cpeak(t2, t1) ∼ t2.

the exponentially growing fitness of the specific memes. This
also clearly shows why only a few memes can acquire large
popularity and can survive longer than other memes. Various
forms of F (t ) in Eq. (2) are also tested and we obtain identical
results when F (t ) > 1 for any t .

Note that in this model we obtain the log-normal dis-
tribution and linear growth of the popularity by assuming
the exponential growth of the fitness of a specific meme,
unlike the previous studies [14,15] in which the multiplicative
process with decaying novelty was suggested as the main
mechanism for the log-normal distribution of the popularity.
Furthermore, such log-normal distribution of the meme popu-
larity is observed only for the trending memes. The popularity
distribution for all memes in a social network is known to be
a heavy-tailed distribution [10,11]. Thus, our results indicate
that the meme with exponentially growing fitness more easily
becomes a trending one, and is one possible origin of log-
normal distribution of relative popularity of trending memes.

For a systematic investigation of the characteristic feature
of the trending meme, we increase f ∗(t ) with

F (t ) =
{

1 + t if t/m = natural number

1 otherwise.
(5)

Here m is a natural number. Thus f ∗(t ) changes its value
at every mth update. Equation (5) interpolates the behavior
between the trending meme and nontrending meme. When
f ∗(0) is small and m → ∞, f ∗(t ) never increases, which
corresponds to the case of a nontrending meme. P(C) for
C(2000, 500) of the meme with f ∗(0) = 2 when m → ∞ is
displayed in Fig. 3(a), as an example for nontrending meme.
As shown in Fig. 3(a), if f ∗ does not grow and is comparable
to the fitness fi(= 1) of background memes, we find that P(C)
significantly deviates from the log-normal distribution and
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FIG. 3. Plot of P(C) for F (t ) = 1 + t with (a) f ∗(0) = 2,
m → ∞ when (t1 = 500, t2 = 2000), (b) f ∗(0) = 1, m = 5, when
(t1 = 700, t2 = 2000), and (c) f ∗(0) = 100, m = 100, when (t1 =
300, t2 = 4000). The solid line in (a) represents the relation P(C) ∼
C−δ with δ = 1.8 and that in (b) represents the log-normal distribu-
tion with C0 = 1.94 and σ = 0.03.

becomes a heavy-tailed distribution. In this case, P(C) is well
fitted to the power law

P(C) ∼ C−δ, (6)

with δ ≈ 1.8 ± 0.2. Other values of t2 show nearly the same
behavior as in Fig. 3(a) if f ∗ is sufficiently small and com-
parable to that of background memes. This behavior of P(C)
in Fig. 3(a) implies that all memes including the innovated
one compete with each other before gaining large popularity.
Furthermore, the obtained value of δ is very similar to that for
the popularity distribution of a meme having the same fitness
in Ref. [11]. If f ∗(0) is not much larger than fi(= 1), then the
fitnesses of all memes on the networks are nearly identical.
As a result, the innovated meme cannot become a trending
meme. Furthermore, when t1 → 0, then n(t1) for a meme
with f ∗ approaches n(t1) → O(1) and C(t2, t1) � n(t2). Thus,
P(C) for the meme with f ∗ should show the same behavior
as the cumulative popularity distribution, P(n), for all memes
with equal fitness. As shown in Ref. [11], P(n) for an early
transient period is known to show a heavy-tailed distribution
when there is no innovation process. Therefore, P(C) for a
meme with f ∗ is well fitted to the power law (6).

On the other hand, when f ∗(0) is small but increases by
Eq. (5) with m > 1, the obtained P(C)s are well approxi-
mated by the log-normal distribution. The obtained P(C) for
f ∗(0) = 1 and m = 5 is shown in Fig. 3(b), which provides
more evidence that the meme the fitness of which increases
exponentially becomes the trending meme. Thus, Eq. (5)
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FIG. 4. Plot of Pf ∗ (t ) for the meme for f ∗(0) = 1 with F (t ) =
1.2 = const (black circles), f ∗(0) = 100 with F (t ) = (1 + t ) and
m = 100 (red squares), and f ∗(0) = 1 with F (t ) = (1 + t ) and
m = 5 (blue triangles).

successfully interpolates the behavior between the trending
and nontrending memes.

Furthermore, when f ∗(t ) becomes much larger than fitness
of the background, P(C) deviates from the log-normal distri-
bution, even though the meme with f ∗(t ) becomes a trending
one. In Fig. 3(c) we display the obtained P(C) for f ∗(0) =
100 and m = 100. The data in Fig. 3(c) clearly show that P(C)
deviates from the log-normal distribution, even though P(C)
has a peak.

In order to investigate the different behaviors between the
memes with small and large f ∗(t ), we measure the fraction
Pf ∗ (t ) of the nodes which have the meme with f ∗. When P(C)
of the trending meme becomes log normal, Pf ∗ (t ) shows a
characteristic behavior. As shown in Fig. 4, Pf ∗ (t ) remains at
the value of 1/N for a relatively long period. Then it abruptly
increases and approaches Pf ∗ (t ) = 1 for F (t ) = const and
1 + t with m = 5. In contrast, Pf ∗ (t ) for F (t ) = 1 + t with
m = 100 shows a clearly different behavior from that for the
case of the log-normal distribution. Pf ∗ (t ) for F (t ) = 1 + t
with m = 100 increases continuously and smoothly. We also
measure Pf ∗ (t ) for various N and find that the behavior of
Pf ∗ (t, N ) is not affected by N (see Appendix B). Thus the
abrupt increase is responsible for the origin of the log-normal
distribution of P(C). This resembles the adoption dynamics
in various systems having innovation. In such systems, a
new technology, genotype, or phenotype emerges and lurks
in the background for a relatively long time. Then, it suddenly
spreads over the whole system and becomes the most popular
one [22–24]. In our model the trending meme also shows a
similar property with such adoption dynamics.

IV. SUMMARY AND DISCUSSION

In summary, we study the origin of the log-normal popular-
ity distribution of the trending memes observed in many real
social networks. From a biological analogy, we introduce a
fitness of each meme, which is a natural assumption based on
sociological reasons. From numerical analysis we find that the
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relative popularity distribution of innovated (trending) memes
is well described by the log-normal distribution when the
fitness of the innovated meme grows exponentially in time.
In addition, we also show that the relative popularity C(t2, t1)
scales as C(t2, t1) ∼ t2/t1. This implies that the popularity of
such trending memes grows linearly in time. The obtained re-
sults from our model with exponentially growing fitness agree
very well with the empirical results reported in Refs. [14,15].
Even though the multiplicative process with decaying novelty
was suggested as the main mechanism for the log-normal
distribution of the relative popularity, the suggested models
cannot provide a complete picture for the evolutionary dy-
namics of all memes, because the log-normal distribution is
observed only for the trending memes. In contrast to the pre-
vious models, our model focuses on the fitness of each meme
and shows that the exponentially growing fitness is another
important possible origin of the log-normal distribution of
the popularity. Furthermore, our model also suggests that the
fraction of nodes with such trending memes remains at small
constant value for a relatively long period. Then, the trending
meme abruptly spreads over the entire system like in the many
innovation-propagation models [22–24]. This abrupt increase
is the main origin of the log-normal distribution and the linear
increase of C(t2, t1) for the trending meme. As a result, the
trending memes are exposed to the public much longer than
others.

On the other hand, if the fitness of the innovated meme
becomes relatively small and does not grow, then the fitness
difference does not affect the popularity distribution. Thus,
the popularity distribution can be well described by the power
law. This clearly shows that the fitness plays a very important
role to acquire a large popularity and its observed distribution.
Therefore, our model provides a clue to understand why only
a small number of memes can acquire a large popularity in
many real social networks, and why such trending memes are
exposed to the public longer than others.

Furthermore, the initial fitness of memes generally cannot
be so large even for the trending meme and even though
they are generated by, for example, mass media or famous
organizations. If the fitness of such a meme is extremely
large, then the meme would be shared by all users in a social
network in a very short time. However, in the real world,
such an extreme case is never observed. Therefore, in real
social networks, it is more natural that the fitness of the
trending meme has a moderate value at its birth than there
is some meme the fitness of which is extremely large, and it
evolves into some larger value through the interaction with the
environments as in biological systems.

In the real world, the number of memes which become
trending memes is very small. For example, on Facebook,
among hundreds of millions of daily postings (or memes)
only a limited number of memes can be trending memes.
In addition, in real online social networks, multiple memes
can be displayed on the same screen at the same time. Thus
each trending meme can behave as an independent meme.
Furthermore, due to the limited attention of each user, the
memes with large popularity are not shared by all users in
the network. Therefore, competition between trending memes
should rarely occur, and it is natural to assume that there
is no competition between them when the popularity of the
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FIG. 5. Plot of PC’s for F (t ) = 1 + t with (a) f ∗(0) = 1, m =
2 when (t1 = 1000, t2 = 4000) and (b) f ∗(0) = 1000, m = 1000
when (t1 = 50, t2 = 500). The size of network is N = 10 000. The
solid line represents the log-normal distribution with C0 = 6.06 and
σ = 0.03.

meme rapidly grows. Thus, the model studied in this paper
is a suitable model to explain the characteristic features of
trending memes.
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APPENDIX A: P(C) ON SMALL-WORLD NETWORKS

In Fig. 5 we display P(C)s measured on small-world
networks (SWNs) with 〈k〉 = 10 and rewiring probability
φ = 0.1 [21]. As in Fig. 3(b), when f ∗(0) is small but
increases by Eq. (5) with m > 1, the obtained P(C) is well
approximated by the log-normal distribution as in Fig. 5(a).
On the other hand, if f ∗(0) becomes much larger than fit-
ness of the background memes, P(C) of the trending meme
on SWNs significantly deviates from the log-normal distri-
bution as shown in Fig. 5(b). The results agree very well
with the measured P(C)s on SFNs. Since SWNs are re-
garded as the scale-free network with γ → ∞, the results
clearly show that P(C)s are not affected by the underlying
topology.

APPENDIX B: Pf ∗ (t, N)

In Fig. 6 we display Pf ∗ (t, N ) for various values of N (=
10 000, 20 000, 40 000, 80 000, 120 000) to show how
the size of network affects the behavior of Pf ∗ (t, N ). The
symbols represent the measured Pf ∗ (t, N ) when F (t ) is given
by Eq. (5) with f ∗(0) = 100 and m = 100. The line in Fig. 6
shows Pf ∗ (t, N = 120 000) when f ∗(0) = 1 and m = 5 as
in Fig. 4. When t is small, Pf ∗ (t, N ) for F (t ) = 1 + t with
m = 100 decreases as N increases. Even though t∗/N at which
Pf ∗ (t, N ) deviates from 1/N slightly increases as N increases,
Pf ∗ (t, N ) for m = 5 (black line) stays at the value 1/N for
a much longer period than that for m = 100 as shown in
Fig. 6. This clearly shows that the gradual growth of Pf ∗ (t ) for
m = 100 in Fig. 4 is not originated from the finite-size effect.
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