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Network generators that capture the Internet’s large-scale topol-
ogy are crucial for the development of efficient routing protocols
and modeling Internet traffic. Our ability to design realistic gen-
erators is limited by the incomplete understanding of the funda-
mental driving forces that affect the Internet’s evolution. By
combining several independent databases capturing the time evo-
lution, topology, and physical layout of the Internet, we identify
the universal mechanisms that shape the Internet’s router and
autonomous system level topology. We find that the physical
layout of nodes form a fractal set, determined by population
density patterns around the globe. The placement of links is driven
by competition between preferential attachment and linear dis-
tance dependence, a marked departure from the currently used
exponential laws. The universal parameters that we extract sig-
nificantly restrict the class of potentially correct Internet models
and indicate that the networks created by all available topology
generators are fundamentally different from the current Internet.

In light of extensive evidence that Internet protocol perfor-
mance is greatly influenced by the network topology (1),§¶

network generators are a crucial prerequisite for understanding
and modeling the Internet. Indeed, security and communication
protocols perform poorly on topologies provided by generators
different from which they are optimized for, and are often
ineffective when released.¶ Protocols that work seamlessly on
prototypes fail to scale up, being inefficient on the larger real
network.§ Thus to efficiently control and route traffic on an
exponentially expanding Internet (2), it is important that topol-
ogy generators not only capture the structure of the current
Internet, but allow for efficient planning and long-term network
design as well.§

Our ability to design good topology generators is limited by
our poor understanding of the basic mechanisms that shape the
Internet’s large-scale topology. Indeed, until recently all Internet
topology generators (3, 4),� which are software designed to
generate realistic network topologies with several input param-
eters for research and development purposes, provided versions
of random graphs (5, 6). The 1999 discovery of Faloutsos et al.
(7) that the Internet is a scale-free network with a power-law
degree distribution (8) invalidated all previous modeling efforts.
Subsequent research confirmed that the difference between
scale-free and random networks are too significant to be ig-
nored: protocols designed for random networks fare poorly on
a scale-free topology;¶ a scale-free Internet displays high toler-
ance to random node failures but is fragile against attacks
(9–11); computer viruses spread threshold free on scale-free
networks (12) with obvious consequences on network security.
These insights motivated the development of a new brand of
Internet topology generators (13, 14) that provide scale-free
topologies in better agreement with empirical data. Despite
these rapid advances, it is unclear that we are aware of all driving
forces that govern the Internet’s topological evolution. It is
therefore of crucial importance to perform measurements that
directly probe and uncover the mechanisms that shape the
Internet’s large-scale topology.

Here we offer direct experimental evidence for a series of
fundamental mechanisms that drive the Internet’s evolution and
large-scale structure. In contrast with the random placement of

nodes, we find that the Internet develops on a fractal support,
driven by the fractal nature of population patterns around the
world. In contrast with current modeling paradigms, which
assume that the likelihood of placing a link decays exponentially
with the link’s length, we find that this dependence is only linear.
Finally, we provide quantitative evidence that preferential at-
tachment, responsible for the scale-free topology, follows a
linear functional form on the Internet. These results allow us to
identify a class of models that could serve as a starting point for
topologically correct network generators. Surprisingly, the ob-
tained phase diagram indicates that all current Internet network
generators are in a different region of the phase space than the
Internet.

Physical Layout
At the highest resolution the Internet is a network of routers
connected by links. As each router belongs to some administra-
tive authority, or autonomous system (AS), the Internet is often
considered as a network of interconnected ASs. For complete-
ness, here we study simultaneously the router and AS level
topology, using the term node to represent both routers and ASs,
unless specified otherwise.

Current Internet topology generators assume that routers and
domains are distributed randomly in a 2D plane (3, 4, 13, 14).�
In contrast, we find that routers and ASs form a fractal set (15),
strongly correlating with the population density around the
world. In Fig. 1a we show a map of the worldwide router density,
obtained by using the NETGEO tool to identify the geographical
coordinates of 228,265 routers provided by the currently most
extensive router-level Internet mapping effort.** Compared
with the population density map (Fig. 1b), the results indicate
strong, visually evident correlations between the router and the
population density in economically developed areas of the world.
We used a box counting method (15, 16) to analyze the spatial
distribution of router, domain, and population density. The
results, shown in Fig. 2a, indicate that each of the three sets form
a fractal with dimension Df � 1.5 � 0.1. The coincidence
between the fractal dimension of the population and the Internet
(router and AS) nodes is not unexpected: high population
density implies higher demand for Internet services, resulting in
higher router and domain density. Fig. 2b supports the existence
of such correlations, indicating that the router and AS density
increase monotonically with the population density.

Placing the Links
Connecting two nodes on the Internet requires extensive re-
source and time investment. Thus network designers prefer to
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connect to the closest node with sufficient bandwidth, a process
that clearly favors shorter links. To discourage long links, all
topology generators are based on the Waxman model (3), which
assumes that the likelihood of placing a link between two nodes
separated by the Euclidean distance d decays as P(d) � exp(�d�
d0), where d0 is a free parameter taken to be proportional to the
system size. Despite its wide use in Internet topology generators
(3, 4, 13), there is no empirical evidence for such exponential
form, which forbids links between faraway nodes. Intuition
suggests otherwise: one would expect that the likelihood of
connecting two nodes is inversely proportional with the distance
between the nodes, i.e., P(d) � 1�d. Indeed, the cost of placing
a physical link between two existing routers has two components
to it: (i) a fixed technical and administrative connection cost at
the two ends of the link and (ii) a cost of the physical line and
its maintenance. The second factor is proportional to the line’s

length. For large distances the distance-dependent cost domi-
nates, potentially suggesting an 1�d asymptotic dependence for
the probability to connect two routers. The correct functional
form of P(d) is crucial for Internet modeling: our simulations
indicate that a network developing under the Waxman rule
asymptotically converges to a network with an exponentially
decaying degree distribution, in contrast with the power law
documented for the Internet. Therefore, to uncover the proper
form of P(d) we measured the length distribution of the docu-
mented Internet links. The results, shown in Fig. 2c, indicate that
both router and AS level P(d) decays linearly with d, excluding
Waxman’s rule.

Preferential Attachment
Preferential attachment is believed to be responsible for the
emergence of the scale-free topology in complex networks (8).

Fig. 1. Distribution of the Internet around the world. (a) Worldwide router density map obtained by using the NETGEO tool (www.caida.org�tools�utilities�
netgeo) to identify the geographical location of 228,265 routers mapped out by the extensive router level mapping effort of Govindan and Tangmunarunkit.**
(b) Population density map based on the Columbia University’s Center for International Earth Science Information Network’s population data (http:��
sedac.ciesin.org�plue�gpw). Both maps are shown with a box resolution of 1°�1°. The bar next to each map gives the range of values encoded by the color code,
indicating that the highest population density within this resolution is of the order 107 people�box, while the highest router density is of the order of 104

routers�box. Note that while in economically developed nations there are visibly strong correlations between population and router density, in the rest of the
world Internet access is sparse, limited to urban areas characterized by population density peaks.
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It assumes that the probability that a new node will link to an
existing node with k links depends linearly on k, i.e., �(k) �
k��iki. On the other hand, in real systems preferential attach-
ment could have an arbitrary nonlinear form. Calculations
indicate, however, that for �(k) � k�, with � � 1 the degree
distribution deviates from a power law (17). In the light of these
results, to properly model the Internet, we need to determine the
precise functional form of �(k). To achieve this, we use Internet
AS maps recorded at 6-month intervals, allowing to calculate the
change 	k in the degree of a AS node with k links during the
investigated time frame. The results indicate that the rate at
which a node increases its degree is linearly proportional with the
number of links the node has, offering quantitative support for
the presence of linear preferential attachment (Fig. 2d), sup-
ported by independent measurements as well (17).

Taken together, our measurements indicate that four mech-
anisms, acting independently, contribute to the Internet’s large-
scale topology. First, in contrast with classical network models
the Internet grows incrementally, being described by an evolving
network (8, 17–19) rather than a static graph (5, 6). Second,
nodes are not distributed randomly, but both routers and do-
mains form a scale-invariant fractal set with fractal dimension
Df � 1.5. Finally, link placement is determined by two competing
mechanisms. First, the likelihood of connecting two nodes
decreases linearly with the distance between them, and second,
the likelihood of connecting to a node with k links increases
linearly with k. Building on these mechanisms, each supported
independently by our measurements, we propose a general
model that provides an integrated framework to investigate the
effect of the different mechanisms on the Internet’s large-scale
topology.

Consider a map, mimicking a continent, which is a 2D surface
of linear size L. The map is divided into squares of size � � �
(� 

 L), each square being assigned a population density �(x,y)
with fractal dimension Df. At each time step we place a new node
i on the map, its position being determined probabilistically, such
that the likelihood of placing a node at (x, y) is linearly propor-
tional with �(x, y). We assume that the new node connects with
m links to nodes that are already present in the system. The
probability that the new node links to a node j with kj links at
distance dij from node i is

��kj, dij� � kj
��dij

�, [1]

where � and � are preassigned exponents, governing preferential
attachment and the cost of the node-node distance. Increasing
� will favor linking to nodes with higher degree, whereas a higher
� will discourage long links.

The parameters of the model can be assigned into two
qualitatively different classes. First, L, �, and m are nonuniversal
parameters, as their value can be changed without affecting the
network’s large-scale topology. On the other hand, �, �, and Df
are universal exponents, as their values uniquely parameterize
a family of Internet models, generating potentially different
large-scale topologies. Therefore, we use a 3D phase space
whose axis are the scaling exponents, 2�Df, �, and 1�(� 
 1)
(Fig. 3) to identify the possible scaling behavior predicted by the
model. For easy reference, we show the location within this phase
space of all currently used Internet topology generators. Our
measurements (Fig. 2) allow us to unambiguously identify the
position of the Internet within this phase space at � � 1, � � 1,
and Df � 1.5, clearly separated from all network generators. Such
separation should not be a problem if some of the models and
the Internet belong to a region of the phase space that share the
same universal topological features. We will show next, however,
that this is not the case, as deviations from the point denoting
the Internet can significantly alter the network’s large-scale
topology.

To systematically investigate the changes in the network
topology as we deviate from the point denoting the Internet next
we consider the effect of changing �, �, and Df, moving
separately along the three main axis.

Varying � while leaving � � 1 and Df � 1.5 unchanged changes
the contribution of the Euclidean distance to the network
topology, interpolating between the � � 0 phase corresponding
to the scale-free model and the � � � limit, corresponding to the
Waxman rule. As Fig. 4a shows, for an exponential distance
dependence (Waxman’s rule) the degree distribution P(k) de-
velops an exponential tail, disagreeing with the power law P(k)
of the Internet (7).** Moving toward the � � 0 axis, as the
physical distance gradually loses relevance in Eq. 1, we recover
the scale-free model, for which the physical layout does not
influence the network topology. Changing � affects the link

Fig. 2. Characterizing the Internet’s physical layout and topology by using
direct measurements. (a) The physical layout of the Internet was studied by
using a box counting method (15, 16), applied to the map shown in Fig. 1. The
log-log plot shows the number of boxes of size � � � km with nonzero
routers�AS�inhabitants in function of � for North America. The slope of the
straight line indicates that Df � 1.5 � 0.1 for each dataset. (b) The dependence
of the router�AS density on the population density in North America, showing
the average number of router�AS nodes in a 1° � 1° box in function of the
number of people living in the same area. Similar plots were obtained for each
continent, the steepness of the curves strongly correlating with economic
factors. Indeed, strong correlations between router density and population
are observed for North America, Australia, and Europe, whereas the correla-
tions are much weaker for Africa and South America. To determine the
AS density we used 12,409 ASs from Network Analysis Infrastructure (http:��
moat.nlanr.net�infrastructure.html), combined with NETGEO to identify their
geographical location. (c) The cumulative length distribution of the links
connecting routers defined as shown

�
d

R

P(x)dx,

as a function of the dimensionless variable d�R, where d is the Euclidean
distance between two routers and R � 6,378 km is the radius of the Earth.
The linearly decaying cumulative P(d) on a log-linear plot indicates that
P(d) � 1�d. We removed the first point, corresponding to d�R � 0, as that
collects within a single box all router pairs that our map resolution does not
resolve, creating an artificially large router density. Higher-resolution maps
should automatically eliminate this artifact. (d) The cumulative change 	k in
the connectivity of AS nodes with k links. The dotted line has slope 2,
indicating that the cumulative 	k � k2, i.e., the change in 	k is linear in k,
offering direct proof for linear (� � 1) preferential attachment.
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length distribution P(d) as well. As shown in Fig. 4b, for � � 1
the P(d) distribution quantitatively agrees with the 1�d depen-
dence uncovered by the direct measurements (Fig. 2c), but in the
exponential limit of the Waxman rule we find that P(d) develops
an exponential tail, a functional form that characterizes the full
1�(� 
 1) � 0 plane (i.e., valid for arbitrary � and Df as long as
� � �). Finally, decreasing � does not seem to affect P(k), but
it does change P(d), which for � � 0 develops an extended
plateau for d�R 
 10�2, followed by rapid decay, in disagreement
with the measurements (Fig. 2c). Consequently, moving with �
away from the empirically determined � � 1 value affects both
the degree and the distance distribution, creating significant
deviations from the known Internet topology.

Varying � while leaving Df and � unchanged has drastic
immediate effects on the degree distribution, forcing on it an
exponential form. Indeed, for any � 
 1, the distribution P(k)
develops an exponential tail, turning into a pure exponential for
� � 0, when preferential attachment is absent (Fig. 4c). This
finding agrees with the analytical predictions of Kapriwsky et al.

(17), who have shown that � 
 1 destroys the power law nature
of the degree distribution in the scale-free model. The calcula-
tions predict that for � � 1 gelation takes place, leading to a
network architecture in which all nodes are connected to a
central node. Our simulations fully confirm these prediction in
the vicinity of the Df � 1.5 and � � 1 point, as for � � 1 the P(k)
distribution develops an elongated nonpower law tail, corre-
sponding to a few highly connected nodes, a characteristic
feature of gelation. Furthermore, our simulations indicate that
the gelation phase is present in the full � � 1 region of the phase
space, colored yellow in Fig. 3. Consequently, we find that any
deviation from � � 1 results in a significant alternation of the
network’s P(k) distribution, while having little effect on P(d)
(Fig. 4d).

Fig. 3. Phase diagram summarizing various Internet models and their
expected large-scale topology. The axes represent the scaling exponents, 1�
(� 
 1), 2�Df and �, governing, respectively, link placement, node location,
and preferential attachment. Our measurement indicates (Fig. 2) that within
this phase space the Internet can be found at 1�(� 
 1) � 1�2, 2�Df � 0.5, and
� � 1, identified as a red circle. The yellow boxes indicate the location of all
current Internet topology generators. WAXMAN (3): Nodes are placed ran-
domly in space (Df � 2) with exponential distance dependence [1�(� 
 1) � 0]
and without preferential attachment (� � 0). TIERS (2): Based on a three-level
hierarchy the model has no space dependence [Df � 2, 1�(� 
 1) � 1] and no
preferential attachment (� � 0). GT-ITM (4): While based on several different
models, the most used PureRandom transit-stub version occupies the same
position in the phase space as TIERS [Df � 2, 1�(� 
 1) � 1, � � 0]. INET2.0 (14)
connects randomly placed nodes by using an externally imposed power-law
connectivity information. While it does not include preferential attachment
explicitly, as P(k) is forced to follow a power law, we put this generator at
Df � 2, 1�(� 
 1) � 1, � � 1. Note, however, that there are significant known
differences (24) between a static graph, such as generated by INET, and
scale-free topologies generated by evolving networks, such as the Internet.
BRITE (13): The most advanced of all, BRITE incorporates preferential attach-
ment (� � 1) combined with the Waxman rule (1�(� 
 1) � 1) for placing the
links. As BRITE has the option to produce topologies with different parame-
ters, we denote by BRITE-1 the version with only preferential attachment
[Df � 2, 1�(� 
 1) � 1, � � 1], and BRITE-2 the version including the Waxman
rule as well [Df � 2, 1�(� 
 1) � 0, � � 1]. Note that BRITE has as option to
include inhomogeneous node placement, creating regions with high-node
density mimicking highly populated areas. The algorithm, however, does not
create a fractal, thus we choose Df � 2 for both BRITE-1 and BRITE-2. The
scale-free model (8), which ignores the physical location of the nodes (� � 0
thus Df can be arbitrary) is shown as a separate blue line on the 1�(� 
 1) � 1
axis and � � 1. The green areas correspond to an exponential P(k) distribution,
while yellow areas are characterized by gelation, indicating that the Internet
strikes a delicate balance at the boundary of these two topologically distinct
phases.

Fig. 4. The dependence of the degree distribution (Left) and link length
distribution (Right) on the scaling exponent �, �, and Df. (a and b) The effect
of changing �, with � � 1 and Df � 1.5 unaltered, on P(k) (a) and P(d) (b). Note
that the exponential Waxman rule corresponds to � � �, in which case P(k)
develops an exponential tail. (c and d) The effect of changing � while fixing
� � 1 and Df � 1.5 on P(k) (c) and P(d) (d). For � 
1 P(k) develops an exponential
tail, whereas for � �1 gelation takes place. (e and f ) The effect of changing the
fractal dimension Df while fixing � � 1 and � � 1 on P(k) (e) and P(d) ( f). Note
that changing Df from a fractal (Df � 1.5) to a homogeneous nonfractal
distribution (Df � 2) leaves P(k) practically unchanged. On the other hand, for
Df � 2 corresponding to random node placement the P(d) distribution devi-
ates from the data points measured for the Internet, shown as symbols in f. All
simulations were carried until n � 109,533 nodes had been added to the
network, which is the size of the currently available router level network maps
for North America. Although here we used m � 3 to match the Internet’s
known average degree, simulations assigning stochastically chosen m � 1 and
m � 2 values offer similar results.
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Varying Df while leaving � and � unchanged has little visible
effect on the degree distribution (Fig. 4e). The only changes
appear in P(d). Indeed, we find that placing the nodes propor-
tional to the population density, thereby creating a fractal with
Df � 1.5, results in a P(d) distribution in agreement with the data
points provided by the direct measurements (Fig. 4f ). On the
other hand, a random node distribution, corresponding to Df �
2, generates a P(d) that is visibly different from the real data. A
uniform distribution appears to lead to a long plateau in P(d),
followed by a faster decay than seen in the real Internet.

In summary, our measurement and simulations indicate that
the Internet takes up a very special point in the (�, Df, �) phase
space, such that deviations from its current position identified by
direct empirical measurements can significantly alter the net-
work topology. This Internet’s position within the phase space
can be understood if one inspects the network’s evolution.
Indeed, the population density-driven router placement deter-
mines the Df point and the cost of the cables determines the � �
1 point. The only potential explanation for � � 1 is that a router’s
attractiveness is determined mostly by the bandwidth it offers,
which appears to scale linearly with the router’s degree. Inter-
estingly, we find that all current generators lay in a different
region of the phase space than the Internet (Fig. 3), indicating
that they generate networks that belong to a different topological
class. Although the changes induced by not considering the
fractal nature of the router distribution are less striking, we find
that the use of � � 1, a feature of all available network
generators, has drastic topological consequences.

Identifying the location of the Internet within this phase space
does not automatically provide an Internet model valid to
ultimate details, as there are several nonuniversal characteristics
that contribute to the network topology. For example, several
studies have established that the value of the degree exponent �
can be tuned by changing the model parameters (8, 17–19), as the
relative frequency of node and link addition and removal jointly
determine �. To predict the value of the degree exponent one
needs to carefully measure all frequencies and include internal

links, which requires time-resolved Internet maps that are cur-
rently available only at the low-resolution AS level only. Con-
sequently, the degree exponent can take up any value, while
leaving the Internet’s position in the phase space unchanged.
Similarly, the Internet displays nontrivial higher-order correla-
tions, that could be explained by incorporating node fitness (20,
21). Therefore, to design topology generators that reproduce
simultaneously the precise numerical values and the correct
functional form of the Internet’s path length and degree distri-
bution, one needs to incorporate numerous Internet-specific
details. However, our results indicate that several universal
constraints influence the network’s large-scale topology. That is,
no matter how detailed an Internet model is, if its universal
parameters (�, �, Df) deviate from those uncovered by mea-
surements, the large-scale topology will inevitably differ from
the current Internet.

The advantage of the model proposed here is its f lexibility: it
offers an universally acceptable skeleton for potential Internet
models, on which one can build features that could lead to
further improvements. Using an evolving network to model the
Internet has the potential to predict the future of the network,
as the model incorporates only time invariant mechanisms that
should continue driving the network’s development in the future.
Such predictive power, combined with elements pertaining to
link bandwidths and traffic predictions (22) could offer a crucial
tool to uncovering potential bottlenecks and network conges-
tions resulting from the Internet’s rapid, decentralized develop-
ment. These advances are crucial for both scientific and design
purposes, being a key prerequisite for developing the next-
generation communication technologies. In addition, the model
introduced here offers a realistic starting point for a general class
of network topologies that combine the scale-free structure with
a precise spatial layout (23).
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