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• We construct the information transfer network based on the transfer entropy.
• We analyze the modular structure with various time resolutions.
• We compare the results with modular structure obtained from the cross correlations.
• We show that the transfer entropy provides a better modular structure with higher value of modularity.
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a b s t r a c t

We study the modular structure of financial network based on the transfer entropy (TE).
From the comparisonwith the obtainedmodular structure using the cross-correlation (CC),
we find that TE and CC both provide well organizedmodular structure and the hierarchical
relationship between each industrial group when the time scale of the measurement is
less than one month. However, when the time scale of the measurement becomes larger
than one month, we find that the modular structure from CC cannot correctly reflect the
known industrial classification and their hierarchy. In addition the measured maximum
modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better
weight measure than CC for the system with asymmetric relationship.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent development of network science has been provided very useful and comprehensive framework to investigate
the interwoven connectivity patterns observed in a wide range of scientific disciplines from physics to biology and
economics [1]. In many real networks such as social networks [2], brain networks [3], protein-interaction network [4], each
node belongs to amodule or community. Themodule is a group of nodeswhich form a tightly knit groupwith high density of
within-group edges and a lower density of between-group edges [5]. Such modules or communities are mesoscale building
blocks of complex networks, because they usually correspond to the fundamental functional blocks in a network. Therefore,
classifying modules in a network has been a fundamental problem to understand the origin of the specific topological,
functional, and dynamical properties of a network.

Most studies on the modular structure of a given network have been focused on the finding of an efficient algorithm
from a given topological information. Examples include themodularitymaximization [5], clique percolation [6], and spectral
analysis of the non-backtracking matrix [7]. Due to the inherent complexity, developing a more efficient model algorithm
is still an open problem in network science. Besides finding the efficient algorithm, uncovering the relationship between
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the given modules is also an important quest to understand the organization of complex systems. Especially, the hierarchy
between themodules in a network is one of the important and pervasive features of the organization of natural and artificial
systems out of equilibrium [4,8–10]. Thus, finding the hierarchical relationship between modules potentially provides
significant insight into the central aspects governing the physical properties of networks and their functionality.

There is an additional difficulty in finding modules and their relationship in many real networks. Many real networks
are well described by the weighted networks in which each link is associated with a weight [11]. Examples of weighted
networks include scientist collaboration network and airport network [12]. Even though the topological definition of the
modularity for the weighted networks can be easily extended from that for the unweighted network [13], finding a good
measure for weight of each link is not a trivial problem. Therefore, in order to understand the dynamical and topological
properties of such weighted networks, it is very important to find more informative weight measure for network analysis
of various systems.

One widely usedmeasure for the weight is the cross correlation (CC), which is usually assumed to be symmetric [14–21].
For example, in financial system, Mantegna introduced a method to find a hierarchical arrangement of the stocks based on
the CC of asset returns [14]. By defining an appropriatemetric, they constructed theminimum spanning tree (MST) from the
fully connected weighted graph and identified the clusters of companies. More recently, the study on the time dependent
properties of CC distribution and the dynamic asset tree showed quantitative differences between the crash and the normal
periods [21].

However, in many real complex systems, the relationship between each unit is not necessarily symmetric. One of
important factors for such asymmetry is the causality. The causality in complex systemwas usually measured by the lagged
CC [22], Granger causality [23], and the time-delayedmutual information [24]. The lagged CC is intuitive and simplemeasure
for the asymmetric interaction between each unit in complex systems. By using the lagged CC, Kullmann et al. constructed
a weighted directed network and quantitatively showed that there is some pulling effect between companies in financial
system [22]. The causality network between global market indices based on the Granger causality was also studied [25].
Time-delayed mutual information provides more general and intuitive measure for the dependence between random
variables. But it was recently shown that the mutual information does not explicitly distinguish the actually exchanged
information due to a common history or input signal [26]. As an alternativemeasure of the information transfer, the transfer
entropy (TE) was introduced to exclude such undesired influences [26]. In financial systems, such as global market indices,
the causality measured by TE between the market indices is well represented by the weighted directed edges [27].

In this paper, to investigate how useful TE is as a weight measure for financial system, we consider the information
transfer network (ITN), in which TE is used as the weight measure, and analyze the modular structure. The modular
structures of ITN are comparedwith those of correlation network (CN) which uses the cross correlation to determineweight
between companies. From the comparison, we find that themodules of both ITN and CN are consistent with the well known
industrial classification [28] when the time scale of the measurement is small. However, if the time scale becomes larger,
then the modules in CN significantly deviate from the known industrial classification. In addition, the measured maximum
modularity, Qmax, of ITN is always larger than that of CN, which indicates that TE is a better weight measure than CC for the
systems in which the asymmetric relationship between each unit becomes important.

2. Data set and definition of states

In order to study modular structure of the financial network and their hierarchical relationship, we use the Standard &
Poor’s (S&P) 100 data traded from 03/01/1962 to 03/12/2010 [29]. From the obtained time series of S&P 100 index, we first
define the state, it , of company I at day t to calculate TE. As the simplest choice of it for a company I we consider the binary
state, i.e. it = 1 (0) if YI(t + 1t) ≥ YI(t) (YI(t + 1t) < YI(t)), where YI(t) denotes the stock price of company I at time t .
Thus it simply represents the increase (decrease) of price if it = 1 (it = 0).

3. Transfer entropy and cross correlation

Let it (jt ) be the state of company I (J) at time t . TE which represents the information flow from J to I is defined as [26]

TJ→I =
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of state (it+1, i

(k)
t , j(ℓ)t ) in a time series. p(it+1, i

(k)
t , j(ℓ)t ) is the joint probability that the combination of it+1, i

(k)
t and j(ℓ)t has

a particular value, and p(it+1|i
(k)
t , j(ℓ)t ) is the conditional probability that it+1 has a particular value when the values of the

previous samples i(k)t and j(ℓ)t are given. k and ℓ in Eq. (1) are set as k = ℓ = 1 [26]. In ITN the weight from a company J to I
is assigned as wJI = TJ→I .

For a comparisonwe use CC as aweight between nodes to construct CN. CC between node I and J ,GIJ , is defined as [15–20]
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Here RI ≡ ln YI(t + 1t) − ln YI(t) is the return and σ 2
I ≡


R2
I − ⟨RI⟩

2. The CN is obtained by assigning the weight from J to
I as wJI = GJI . Since GIJ in Eq. (2) is symmetric, wIJ = wJI = GIJ .

4. Modularity

To find the modular structure we use the modularity maximization method introduced in Ref. [5]. The modularity for a
weighted directed network of size N is defined as [30],

Q =
1
2M


I,J


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J
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Here cI represents the community including the company I . wIJ is the weight from a company I to J and wout
I =

N
J=1 wIJ

(win
I =

N
J=1 wJI ) is the total weight from (to) the node I . M =

N
I=1

N
J=1 wIJ is the total weight of networks. To find

the modular structure, we use the agglomerative hierarchical clustering method [5]. The algorithm is as what follows. Start
with a state in which each vertex is the sole member of one of N communities. We repeatedly join communities together in
pairs. The pairs are chosen at each step to maximize the increase in Q . The progress of the algorithm can be represented as
a dendrogram, a tree showing the order of the joins. Different levels of cuts through this dendrogram give different levels
of modules or communities. We can select the best cut by looking for the maximal value of Q .

5. Results

In Fig. 1(a), the dendrogram obtained from ITN with 1t = 1-week is displayed. At each level of dendrogram, we
calculate Q and find that the maximum of Q for 1t = 1-week is Qmax = 0.1194. When Q = Qmax (represented by
black lines) we obtain four distinctive modules. Each module at Q = Qmax is composed of technology related companies,
financial/goods distribution system/service related companies, material companies, and utility/health care/consumer goods
related companies, respectively. These four distinctive modules can be divided into the small groups as shown in Fig. 1(a).
Each small group agrees well with the known classification of the industries and shows that there exists a clear hierarchy
between them. For example, the companies in the ‘‘material’’ group have strong tendency to be connected together at
the early stage of the algorithm (see Fig. 1(b)). The second lowest level of group is composed of the companies in the
‘‘utilities’’ as shown in Fig. 1(c). The ‘‘utilities’’ group is combined with a small ‘‘technology’’ group. This small technology
group is composed of two communication companies. The third lowest level of group is mainly composed of the ‘‘financial’’
companies as shown in Fig. 1(d). Most of the ‘‘technology’’ companies such as IBM and Intel belong to the fourth lowest
level of group as shown in Fig. 1(e). At the higher level of hierarchy the ‘‘financial’’ group is merged with the companies
of ‘‘consumer goods’’, ‘‘industrial goods’’, and ‘‘service’’ groups. Especially, the companies in the consumer goods and the
industrial goods in this module are related to the goods distribution system such as Costco, Fedex, and UPS. As we repeat
the algorithm, the groups of ‘‘consumer goods’’, ‘‘health care’’ and ‘‘utility’’ are merged into a single module at Q = Qmax.
The different level of modules clearly shows the hierarchy between industrial groups. Specifically, the companies which are
related to the raw material industry have strong tendency to form a module at the lower level of cut. For the intermediate
level, the companies in the financial/goods distribution system and the technology groups make their ownmodules. On the
other hand, the companies in the consumer packaged goods such as health care and consumer goods make a single module
at the higher level of cut.

In Fig. 2 the dendrogram obtained from CN with 1t = 1-week is displayed. When CC is used for the weight on each
directed edge, three distinctive modules are obtained at Qmax = 0.057. In CN the companies in the material group are first
connected together as in the case of ITN in Fig. 2(b). As we repeat the algorithm, the companies in the utility group are
combined to make a small group (Fig. 2(c)). This utility group is connected with the material group. Then the financial and
technology groups are formed as shown in Fig. 2(d) and (e). At the higher level of cut, the companies in the health care and
the consumer goods make a single module. Even though the technology group and the financial group are not separated in
CN at Q = Qmax, CN with 1t = 1-week shows a similar hierarchy and modular structure with ITN. Note that the obtained
value of Qmax for CN is lower than that for ITN. This indicates that the companies in the samemodule for CN aremore loosely
connected than those for ITN.

Fig. 3 shows the dendrogram obtained from ITN with 1t = 1-month. As shown in Fig. 3 we find that there are three
distinctive modules at Q = Qmax. In this case, the technology group and material group belong to the same module at
Q = Qmax. Fig. 3(b)–(e) show the small groups obtained from the five lowest level of cuts. Like the ITN with 1t = 1-week,
the companies in the material group are connected together at the lowest level of cut (Fig. 3(b)). Then the utility group and
the financial group are formed, respectively (Fig. 3(c) and (d)). As we repeat the algorithm, the technology group is formed
and merged with material group (Fig. 3(e)). Thus the modular structure and their hierarchy of ITN with 1t = 1-month are
almost the same as ITN with 1t = 1-week.

In Fig. 4 we display the dendrogram for CNwith1t = 1-month. At Q = Qmax we find two distinctive modules. However,
we can find only three relatively well ordered small groups, material group (Fig. 4(b)), technology group (Fig. 4(c)), and
financial group (Fig. 4(d)). The companies in the other groups are widely scattered and mixed together without any specific
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Fig. 1. (Color online) (a) Dendrogram obtained from ITN with 1t = 1-week. The modules and hierarchy represented by the black lines correspond to
the case of Q = Qmax . The gray lines at the top of the dendrogram denote the higher level of the hierarchy with Q < Qmax . Enlarged plot of (b) regime
I—material group, (c) regime II—utilities and technology groups, (d) regime III—financial group, and (e) regime IV—technology group.

order (see Fig. 4(a)). This indicates that when 1t becomes large, the modules at higher level of cut cannot be correctly
detected if CC is used as a weight measure. This inaccuracy in finding module with CC is originated from the absence of
long-term correlation in financial market [31].

When 1t = 3-months, we still find three different modules in ITN at Q = Qmax with relatively well ordered subgroups
as shown in Fig. 5(a). However, we cannot find any meaningful modular structure in CN with ∆ = 3-months, even though
the companies in the utility, the material and the health care groups have tendency to be connected together as in Fig. 5(b).

For a quantitative analysis of the modular structures obtained from ITN and CN, we compare the value of Qmax for each
network. In Fig. 6 we display the measured Qmax for various values of 1t . The data in Fig. 6 clearly shows that Qmax obtained
from ITN is almost twice as large as that from CN for all1t . From the definition ofQ in Eq. (3), high value ofQ corresponds to
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Fig. 2. (Color online) (a) Dendrogram obtained from CN with 1t = 1-week. The modules and hierarchy represented by the black lines correspond to the
case of Q = Qmax . The gray lines at the top of the dendrogram denote the higher level of hierarchy with Q < Qmax . Enlarged plot of (b) regime I—material
group, (c) regime II—utility group, (d) regime III—financial group, and (e) regime IV—technology group.

the good division of networks into modules. Thus the result clearly shows that TE is a better weight measure than CC for the
systems with the asymmetric relationship such as causality. In order to see how important the consideration of asymmetric
relationship is, we also construct the symmetric rank correlation network (RCN) using the Kendall’s τB [32]. Kendall’s τB
measures a symmetric rank correlation. As shown in Fig. 6, even though Qmax from RCN for 1t = 1-day is comparable with
Qmax from ITN, Qmax from RCN becomes almost the same with that from CN when 1t becomes larger than 1-day.

We also test how the obtained modules in each network are well divided through measuring the overlapping
communities (or modules). To find the overlapping community in a weighted directed network, we use the algorithm
suggested by Chen et al. [33]. In this algorithm the obtained module at Q = Qmax for each network is given as the
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Fig. 3. (Color online) (a) Dendrogram obtained from ITNwith1t = 1-month. Themodules and the hierarchy represented by the black lines correspond to
the cut at Q = Qmax . The gray lines at the top of the dendrogram denote the higher level of hierarchywith Q < Qmax . Enlarged plot of (b) regime I—material
group, (c) regime II—technology group, (d) regime III—financial group, and (e) regime IV—technology group.

initial module. The overlapping communities can be obtained by the following community expanding procedure. For each
company I we define the total weight wI as wI =

N
J=1(wIJ + wJI). For a company I in a module c , the belonging degree

B(I, c) is defined as B(I, c) =


J∈c(wIJ + wJI)/wI . Starting from the initial modules, (i) find all neighbors Nc of the initial
module c. (ii) For a given threshold of belonging degree B∗, if a company I ∈ Nc satisfies the condition B(I, c) > B∗, then
add I into the module c directly. (iii) Repeat (i)–(ii) until B(I, c) ≤ B∗ for all I ∈ Nc . The procedures (i)–(iii) are also applied
to all modules (see Ref. [33] for details). At the end of the community expanding procedure, some companies can belong
to several modules, which are defined as the overlapping community. For various values of B∗ we find that the number
of overlapping community in ITN is much smaller than that in CN for all 1t . For example, 56 companies belong to the
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Fig. 4. (Color online) (a) Dendrogram obtained from CNwith 1t = 1-month. The modules and the hierarchy represented by the black lines correspond to
the cut at Q = Qmax . The gray lines at the top of the dendrogram denote the higher level of hierarchywith Q < Qmax . Enlarged plot of (b) regime I—material
group, (c) regime II—technology group, (d) regime III—financial group.

overlapping community in CN while there is no overlapping community in ITN at B∗
= 0.4744 with 1t = 1-week. This

result also clearly shows that the modular structure in CN is much fuzzier than that of ITN.

6. Summary

In summary, we study the modular structure of financial market and the hierarchical relationship between them. We
use two different physical quantities to assign the weight on each edge, TE and CC. Using the agglomerative hierarchical
clustering algorithm, we find that the modular structures of ITN and CN are similar if 1t < 1-month. However, for large
values of 1t (>1-month) ITN still preserves the modular structure and their hierarchical relationship, while CN does not
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a b

Fig. 5. (Color online) Dendrogram obtained from (a) ITN and (b) CN with 1t = 3-months. The modules and the hierarchy represented by the black lines
correspond to the cut at Q = Qmax . The gray lines at the top of the dendrograms denote the higher level of hierarchy with Q < Qmax .

correctly reflect the known industrial classification and their hierarchy. In addition,we also find that the value ofQmax for ITN
is always larger than that for CN, which implies that TE is a better weight measure than CC when the relationship between
nodes is not symmetric.
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Fig. 6. Comparison of Qmax obtained from ITN, CN, and RCN.
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