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h i g h l i g h t s

• We construct the information transfer network based on the transfer entropy.
• The transfer entropy represents the causality.
• We find that there is a small-world (SW) regime when we remove the edges.
• In the SW regime, the clustering coefficient synchronized with the volatility.
• We compare the results with the topological properties of correlation networks.
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a b s t r a c t

Westudy the topological properties of the information transfer networks (ITN) of the global
financial market indices for six different periods. ITN is a directed weighted network, in
which the direction and weight are determined by the transfer entropy between market
indices. By applying the threshold method, it is found that ITN undergoes a crossover from
the complete graph to a small-world (SW) network. SW regime of ITN for a global crisis is
found to be much more enhanced than that for ordinary periods. Furthermore, when ITN
is in SW regime, the average clustering coefficient is found to be synchronized with aver-
age volatility of markets. We also compare the results with the topological properties of
correlation networks.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to the availability of large volumes of data amenable to computational analysis, financial systems have been increas-
ingly studied in statistical physics as a part of complex systems in which human activity causes rich interesting phenomena
[1,2]. From the empirical studies on financialmarket data,many interesting universal behaviorswhich govern the dynamical
properties of financial systems have been found [3–5]. Most of those empirical data describe the time evolution of market
properties such as price or index. In general the time evolutions of such quantities are irregular and unpredictable. Thus, ex-
tracting an essential regularity and universal behavior is not a trivial task. Especially, inferring causal relationship between
different time series is very important if the underlying mechanisms are not fully understood. The analysis of complex time
series plays an important role in many disciplines such as physics, neuro-science, seismology, and climate science as well
as economics [6–9]. In this sense, developing theoretical methods or an efficient way to analyze such time series becomes
more important to understand essential properties in various systems.

Studies on financial systems were focused on finding universal properties of financial systems such as (i) the fat-tailed
distribution of return, (ii) absence of correlation in the time-series of return, and (iii) long-term correlation in volatility.
Such universal properties are relatively well studied, and many stochastic models and agent based models have been
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introduced to uncover the origin of such universal behaviors [1,2]. Especially, understanding the peculiar behavior of
volatility is particularly important because the volatility is closely related to the significant events in financial markets such
as bubbles and crashes [10–13]. Thus, quantifying such significant economic events is very crucial not only practically but
also theoretically. Moreover, the volatility is also known to be closely related to the amount of information that has arrived
in the market at a given time and plays an important role in the modeling of the financial systems [1,14,15]. However, the
information flow in the financial system during such significant financial events is not yet well understood because of their
intrinsic complexities.

Recently, there have been several attempts to investigate the relationship between interacting components in various
financial systems using graph theoretical approaches [16–21]. The graph theoretical approaches have provided simple in-
tuitive frameworks to study the underlying properties of financial systems. Since the effect of interaction topology on the
observed universal behavior in financial systems is shown to be crucial [22,23], it is important to find the structure of inter-
actions and its topological properties. However, these studies are in general based on the assumption that the interaction
between each component of the system is symmetric. For example, since the correlation matrix which is widely used in the
analysis of domestic markets with randommatrix theory is usually symmetric [24–26], some extensions of such analysis to
the studies on global market indices assumed the symmetric interaction [16,17,20]. Thus, the network representation based
on such symmetric interactionmatrix is generally considered as an undirected network. The assumption of symmetrymight
give a correct idea to understand the various characteristics observed in financial systems only when the time scale of in-
formation flow is smaller than that of the measurement. On the other hand, if the time scale of information flow is large,
then the asymmetric relationship between components should be considered due to the causality. The causality is usually
measured by the time-delayedmutual information [27] and the delayed cross-correlation [28,29]. But it was shown that the
mutual information does not explicitly distinguish the actually exchanged information due to a common history or input
signal. In order to improve themeasurement of information transfer by excluding those influences, the transfer entropy (TE)
was recently introduced [30] and has been widely applied in many disciplines of sciences such as neurosciences [9]. TE is
also successfully applied to analyze the information flow in various economical systems [21,31–35].

Therefore, in this paper we investigate the information transfer networks (ITN) for different periods to understand how
the information transfer changes when there occur significant economic events. In addition we also study the relationship
between the topological property of ITN and volatility. For this purpose, we select 10 global stock indices over the world.
The time series of each index is divided into six different periods. Four of them correspond to the periods of significant
financial events such as subprimemortgage crisis, and two of them are ordinary periods for comparison. ITN for each period
is constructed from the measured TE. By applying the threshold method [17], we show that ITN undergoes a crossover to
a small-world (SW) network from the complete graph. The obtained ITN in SW regime is not static, i.e the topology of ITN
in SW regime depends on time, which shows a behavior of dynamically evolving temporal network [36–38]. Especially, we
find that the SW regimes for the periods of global crisis and bear market become larger than those for ordinary periods.
Furthermore, when ITN is in SW regime the behavior of clustering coefficient of ITN coincides with that of the volatility. We
also compare the results with that for the correlation networks (CN) for each period.

2. Data set

In order to study how the information transfer between different countries is changedwhen there are significant financial
events, we mainly use 10 major global market indices traded from 01/01/1991 to 31/12/2012. These indices are USA, S&P
100; Japan, Nikkei 225; Hong Kong, HSI; Singapore, STI; Australia, AORD; China, SSE; Swiss, SMI; Germany, DAX30; France,
CAC40; andUK, FTSE. Thoughmore global indiceswould be preferable, usingmore indices results in a substantial shortening
of trading periods due to available data. Because of the differences in national holidays and weekends among the countries,
the data are adjusted according to the following rules as suggested by Ref. [17]: whenmore than 30% ofmarkets did not open
on a certain day, the data of the day is removed. On the other hand, if it was fewer than 30%, we keep existing indices and
insert the last closing value of index for each unopened market. From the obtained time series of index I, YI(t), the return
of market index I is defined as [1],

RI(t) = ln(YI(t)) − ln(YI(t − ∆t)). (1)
Here we use ∆t = 1 day.

As an example, Y (t) and volatility |RI(t)| of S&P100 index are displayed in Fig. 1. The shaded intervals represent the
six different periods which are labeled with a number 1–6. Four of them are the periods for significant financial events
(periods 3–6 in Fig. 1). For comparison’s purpose, two ordinary periods during which any remarkable financial event does
not occur (periods 1 and 2 in Fig. 1) are also investigated [39]. The details of the financial events related to each period are
listed in Table 1. As shown in Fig. 1(a), during the ordinary periods (periods 1 and 2), Y (t) increases very slowly and the
corresponding |R(t)| is relatively small. In contrast to the ordinary periods, in the periods 3–6, Y (t) changes more rapidly,
thus |R(t)| becomes large, which are the characteristics of significant financial events.

3. Definition of states

To calculate TE between indices, we first define the state, it , of index I at the day t . One of the simplest choices of it for
a market index I was suggested in Ref. [35] depending on the sign of RI(t). However, for this binary state, it describes only
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Fig. 1. (a) Time evolution of S&P100 index. (b) Plot of |R(t)|. The gray-shaded intervals represent the six different periods.

Table 1
List of financial events for each period.

Period Event Date

1 No significant event (ordinary) 1991.01.01–1992.12.31
2 No significant event (ordinary) 1994.01.01–1995.12.31
3 Dot Com bubble (bull market) [40] 1998.07.23–2000.08.31
4 Dot Com bubble (bear market) [41] 2000.09.01–2002.10.09
5 Subprime mortgage crisis [17] 2007.03.09–2009.03.09
6 Eurozone crisis [42] 2010.03.09–2012.03.09

Table 2
Assignment of state i(t) for an index I at day t .

i(t) Range of RI (t)

−2 RI (t) < −|R|∗ Non-regular decrease
−1 −|R|∗ ≤ RI (t) < −|R|∗/3 Regular decrease
0 −|R|∗/3 ≤ RI (t) < |R|∗/3 Unchanged

+1 |R|∗/3 ≤ RI (t) < |R|∗ Regular increase
+2 RI (t) ≥ |R|∗ Non-regular increase

the increase or decrease of index I but it cannot reflect how much the index is changed. In order to incorporate the degree
of changes of each index into it , we first obtain the maximum of |RI(t)| , |RI |max, of every index I for each period, and find
that |RS&P100(t)|max during period 2 is the smallest among all |RI |max’s. Thus, we select RS&P100(t) as a reference index for
regular change of index. Let |R|∗ be |RS&P100(t)|max during period 2. If |RI(t)| is larger than |R|∗, then the changes of indices
are regarded as non-regular. On the other hand, if − |R|∗ /3 ≤ RI(t) < |R|∗ /3, then the index is regarded as effectively
unchanged. Otherwise, the change of index is regarded as regular. Assigning rules of state are given in Table 2. The state i =

−1 (i = +1) corresponds to regular decrease (regular increase) of the index and i = 0 represents that the index is effectively
unchanged. On the other hand, i = −2 (i = +2) stands for the non-regular decrease (non-regular increase) of the index.

4. Transfer entropy

Let it (jt) be the state of market index I (J) at the day t . TE which represents the information flow from J to I is defined
as [30]

TJ→I =


p(it+1, i

(k)
t , j(ℓ)t ) log2

p(it+1|i
(k)
t , j(ℓ)t )

p(it+1|i
(k)
t )

. (2)

Here we use the shorthand notation i(k)t = (it , . . . , it−k+1). The sum in Eq. (2) means the sum over all available realization of
state (it+1, i

(k)
t , j(ℓ)t ) in a time series. The joint probability density function p(it+1, i

(k)
t , j(ℓ)t ) is the probability that the combi-

nation of it+1, i
(k)
t and j(ℓ)t has a particular value. The conditional probability density function p(it+1|i

(k)
t , j(ℓ)t ) is the probability

that it+1 has a particular valuewhen the values of the previous samples i(k)t and j(ℓ)t are known. Fromnowon, k and ℓ in Eq. (2)
are set as k = ℓ = 1.

Since stock exchangemarkets have different closing times for a given day t depending on the geographical location of the
market, jt in Eq. (2) should be carefully defined. Thus, we replace jt in Eq. (2) by jt ′ and TJ→I =


p(it+1, it , jt ′) log2

p(it+1|it ,jt′ )
p(it+1|it )

.
Here t ′ represents the first closing day of market J after market I is closed at t . If the two markets for I and J are in the same
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Fig. 2. (Color online) Plot of ⟨C⟩ and ⟨l⟩ against θ for six periods, (a) Period 1, (b) Period 2, (c) Period 3, (d) Period 4, (e) Period 5, and (f) Period 6. Squares
(black) denote ⟨C⟩ and circles (red) represent ⟨l⟩. The shaded (yellow) rectangles stand for the SW regimes.

continent, both should have nearly the same closing time (t = t ′) and TJ→I =


p(it+1, it , jt) log2
p(it+1|it ,jt )
p(it+1|it )

. On the other
hand, if the two markets are in different continents, then TJ→I is calculated in two different ways. If t ′ = t + 1, TJ→I =

p(it+1, it , jt+1) log2
p(it+1|it ,jt+1)

p(it+1|it )
. If t ′ = t, TJ→I =


p(it+1, it , jt) log2

p(it+1|it ,jt )
p(it+1|it )

. Therefore, for any case, the causality is
not violated.

5. Network analysis

Since TE is asymmetric, ITN constructed by TE is a directedweighted complete graph, inwhich a node I represents a global
market index I . The obtained value of TJ→I is assigned to the directed edge from node J to I as its weight,wJ→I . For a system-
atic analysis of the topological properties of ITN, we use the thresholdmethod suggested in Ref. [17]. Starting from a directed
weighted complete graph, with a given threshold θ (0 ≤ θ) we remove the directed edges from node J to I if wJ→I < θ .

To analyze the essential properties of ITN, the dependencies of the average clustering coefficient, ⟨C⟩, and of the average
distance between nodes, ⟨l⟩, on θ are studied as shown in Fig. 2. The clustering coefficient of node I in a directed network is
defined as [43]

CI =
(A + AT )3II

2

dtotI (dtotI − 1) − 2dI

 . (3)

Here A is an adjacency matrix, AT is a transpose of A, dtotI ≡ (AT
+ A)I1 and dI ≡ A2

II . (A
T
+ A)I represents the Ith row of the

matrix (AT
+ A), and 1 stands for the N-dimensional column vector (1, 1, . . . , 1). ⟨C⟩ is obtained by averaging CI over all

nodes I. ⟨l⟩ is obtained by averaging the distance lI→J over all possible pairs of nodes I and J . lI→J is defined by the smallest
number of directed links from I to J . Since ITN is a directed network, lI→J ≠ lJ→I . When there is no connected directed path
from I to J , we assign lI→J = 100. As shown in Fig. 3, there exists the interval of θ in which ⟨C⟩ decreases and ⟨l⟩ increases
for all periods. The similar behavior of ⟨C⟩ and ⟨l⟩ was observed by Watts and Strogatz [44] which is known as small-world
(SW) phenomena. Thus, we will call this interval of θ as the SW regime. More precisely, SW regime in Fig. 2 means that the
corresponding ITN shows the behavior of SW network with 0 < ⟨C⟩ < 1. The intervals of θ for SW regimes are shaded
by gray (yellow) rectangles in Fig. 2. SW regimes for ordinary periods (Fig. 2(a) and (b)) are smaller than those for periods
4–6 (Fig. 2(d)–(f)) and the value of θ at which ⟨C⟩ → 0 for periods 4–6 is larger than that for periods 1 and 2. The periods
4–6 correspond to bear market or global crisis. This indicates that the information transfer between some of the market
indices significantly increases when the market is a bear market or in the global crisis, which increases the fluctuation of TE
between each pair of indices. As a result, those indices are strongly connected to each other. On the other hand, for the bull
market (period 3) the interval for SW regime does not significantly change from that of period 2 as shown in Fig. 2(c). More
interestingly, it is found that the average volatility, ⟨|R|⟩, shows the behavior consistent with that of ⟨C⟩ in SW regime. As an
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Fig. 3. (Color online) Plot of ⟨C⟩’s measured from ITNs (circles) and CNs (squares) for S&P 100. For comparison, we plot ⟨|R|⟩ averaged over each gridded
period (triangles).

example, in Fig. 3, we compare ⟨|R|⟩ of S&P 100 with ⟨C⟩ obtained from ITN with θ = θSW = 0.126 in each two-year period.
With θ = θSW ITNs for all periods are in SW regime [45].

Each two-year period is marked with vertical grids in Fig. 3. The data clearly show the synchronized behavior of ⟨|R|⟩
with ⟨C⟩ for ITN, where ⟨C⟩ for ITN increases (decreases) as ⟨|R|⟩ increases (decreases).

For a comparison, we also construct the correlation network (CN) based on the asymmetric cross correlation,

GI,J =


RI(t)RJ(t ′)


− ⟨RI(t)⟩


RJ(t ′)


R2
I (t) − ⟨RI(t)⟩2

 
R2
J (t ′) −


RJ(t ′)

2 . (4)

Here ⟨· · ·⟩ represents the average over the given period. If I and J are in the same continent, then t = t ′. If I belongs to
the continent different from that for J , then t ′ represents the first closing day of market J after market I is closed at t . CN is
constructed by assigning weight wJ→I = GJ,I to a directed edge from J to I . Then we also apply the same threshold method
as for ITN. The measured ⟨C⟩’s of CN at θSW = 0.42 are displayed in Fig. 3. As shown in Fig. 3, the behavior of ⟨|RS&P100|⟩ is
hardly inferred from ⟨C⟩’s for CN. All the markets except for China show the same behavior (which is not shown).

For a quantitative analysis of the correlation between ⟨|R|⟩ and ⟨C⟩ in SW regime, we calculate the Pearson coefficient
defined as,

G⟨|R(T )|⟩,⟨C(T )⟩ =
⟨⟨|R(T )|⟩ ⟨C(T )⟩⟩T − ⟨⟨|R(T )|⟩⟩T ⟨⟨C(T )⟩⟩T

⟨|R(T )|⟩2 − ⟨⟨|R(T )|⟩⟩2T

T


⟨C(T )⟩2 − ⟨⟨C(T )⟩⟩2T


T

, (5)

where T represents the periodsmarked by vertical grids in Fig. 3. ⟨|R(T )|⟩ and ⟨C(T )⟩ are the averages over a certain two-year
period T . ⟨· · ·⟩T denotes the average over all two-year periods. In Fig. 4(a)wedisplay the obtained Pearson coefficient for each
network with 10 major market indices. The data in Fig. 4(a) clearly show that G⟨|R(T )|⟩,⟨CITN ⟩ > G⟨|R(T )|⟩,⟨CCN ⟩, even for China.
This implies that the analysis of the topological property of ITN provides much better insight to understand the volatility
changes in global market indices. In Fig. 4(b) the obtained Pearson coefficients for 14 indices traded from 01/09/1995 to
31/12/2013 are shown. Even though the estimated errors are large because of the shortened traded interval, the data shows
the same behavior as in Fig. 4(a). For 14 indices, we also find that the value of G⟨|R|⟩,⟨CITN ⟩ and G⟨|R|⟩,⟨CCN ⟩ for Brazil, China, and
Russia are relatively smaller than the other countries. These countries are classified as emerging markets. This implies that
the volatility for emerging market is not relatively well synchronized with the average clustering coefficient. This can be
understood from the characteristic feature for the emerging markets such as antileverage effect [46].

6. Summary

Based on the measured TE we investigate the topological properties of ITN composed of 10 global market indices. Since
TE is asymmetric, the resulting ITN is a weighted and directed graph. By using the threshold method, we find that ITN
undergoes a crossover from a directed weighted complete graph to a SW network. When ITN is in SW regime, it is found
that the average clustering coefficient of ITN is synchronized with volatility, except for China. However, the behavior of
volatility is hardly synchronized with the clustering coefficient of CN. We also find that SW regimes are more enhanced
for bear market or global crisis than for ordinary periods, because the interval of threshold θ for SW regime is much wider
for bear markets. This result clearly shows that the information flow between markets through ITN significantly increases
when there occurs a world-wide financial shock. In contrast, the information flow is hardly captured by CN. Therefore,
understanding the topological properties of ITN is essential to study various properties of time series in global financial
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Fig. 4. (Color online) Pearson coefficient between ⟨|R(T )|⟩ and ⟨C(T )⟩with (a) 10 global indices and (b) 14 global indices. The square representsG⟨|R(T )|⟩,⟨C(T )⟩

for ⟨C(T )⟩ from ITN. The circle stands for G⟨|R(T )|⟩,⟨C(T )⟩ when ⟨C(T )⟩ is obtained from CN. The error bars are estimated from the uncertainty of θ for the SW
regime.

systems. It is also expected that ITN plays an important role as a underlying interaction network in the theoretical modeling
of economic systems.
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