
Physica A 390 (2011) 4034–4037

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Self-organized scale-free networks generated via Merging-and-Creation
dynamics with preferential attachment
Soon-Hyung Yook a, Juyong Park b,∗

a Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Republic of Korea
b Department of Physics, Kyung Hee University, Seoul 130-701, Republic of Korea

a r t i c l e i n f o

Article history:
Received 30 August 2010
Received in revised form 16 June 2011
Available online 26 June 2011

Keywords:
Networks
Merging-and-Creation dynamics
Scale-free networks

a b s t r a c t

We study a self-organized scale-free network model generated using the Merging-and-
Creation dynamics with preferential attachment. We show analytically that the introduc-
tion of preferential attachment hasminimal impact on the steady-state degree distribution.
However, we find also that the preferential attachment gives rise to a hierarchical modular
structure and degree disassortativity, commonly found in technological networks.

© 2011 Elsevier B.V. All rights reserved.

Awide range of complex networks exhibit power-law or scale-free (SF) distributions of connectivity between constituent
nodes [1–3]. Various models have been proposed to explain the phenomenon, preferential attachment being one of the
most studied [2–4]. Other approaches include an explicit construction of graph Hamiltonians [5–8] and the self-organized
criticality (SOC) network model [9]. The SOC network model, based on the Merging-and-Creation (MC) dynamics, was
originally proposed as the underlying mechanism of the power-law distribution of magnetic flux loops and the flare energy
of the Sun [9].

The MC process is perhaps the simplest model of offspring generation through random mating in biological systems.
When the model is applied to networks [10–12], the Simple MC (SMC) model consists of merging two randomly chosen
nodes, and creating a newnode that connects to a pre-existing node at each time step. It is equivalent to themass aggregation
model of Takayasu [13], and analytical and numerical studies have shown that the resulting degree distribution follows a
power law P(k) ∼ k−γ with γ = 3/2, identical to the mass distribution from the mean-field solution of the Takayasu
model [13].

The degree exponent γ = 3/2we find from theMCmodel is very interesting because, while several real-world networks
such as the e-mail [14] and the software networks [15,11] exhibit exponents smaller than 2, such a case has not been
studied as much as the more common cases of γ > 2. Recently, Seyed-allaei et al. studied SMC model to investigate the
properties of the link weights in networks. Their model captures the evolutionary features of each programming unit in
software networks [11]. Even more recently, we studied the detailed structure of the SMC network model, including the
hierarchical modular structure and degree–degree correlations, and compared them with those of a Hamiltonian-based
network model [8]. There we found that the SMC process was not sufficient to reproduce said features of real-world
networks [15], and discussed the effect of young nodes on the differences. In this report, as an extension of the previous
work, we study the effect of interactions between the young and the old node in a network generated from a modified MC
process in which preferential attachment is used in the creation process, encouraging newly created nodes to connect to
high-degree (i.e. old) nodes more strongly than the SMCmodel. We show analytically that a power-law degree distribution
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Fig. 1. (Color online) Schematics of the Merging–Creation dynamics with preferential attachment. (a) Merging: two randomly selected nodes i and j are
merged into a single node m. (b) Creation: a new node is linked to one of the existing nodes with probability proportional to the existing node’s degree
(preferential attachment). Therefore, the most probable choice here is node i with degree k = 4. (c) Sample network configuration with N = 40 nodes.
The nodes in the shaded area are relatively densely interconnected.

results with exponent γ equal to that from the SMC model despite the addition of preferential attachment. We also show,
nevertheless, that the effect of preferential attachment is manifest in other topological properties of the network [8].

Starting from a regular ring of N nodes, each connected to its k̄0 nearest neighbors, the MC process with preferential
attachment consists of the following procedures at each step: (1)Merging: two randomly chosen nodes i and jmerged into
a single nodem of degree km = ki + kj − Ncommon where Ncommon is the number of common neighbors of nodes i and j before
the merger plus the number of connection between themselves (0 or 1) (Fig. 1(a)). (2) Creation: a new node is created and
linked to a pre-existing node i (not to be confused with node i in the merging step) with probability (Fig. 1(b))

Π(ki) =
ki

N−1∑
j=1

kj

. (1)

In this model the number of nodes stays constant at N , and in the steady state the number of total edges is nearly constant.
All the network properties in this report are measured in the steady state. As discussed in Ref. [8], even in the SMC model,
very old nodes tend to be connected to young nodes (usually ones with degree 1). Thus we expect that with the preferential
attachment such effect is even stronger (Fig. 1(c)).

We start by deriving the degree distribution analytically. The rate equation for the average number N(k, t) of nodes of
degree k at time t is

N(k, t + 1) = N(k, t) + δk,1 +
k − 1
Nk̄

N(k − 1, t) −
k
Nk̄

N(k, t) +


1
N

2 −
k′+k′′=k

N(k′, t)N(k′′, t) −
2
N
N(k, t), (2)

where k̄ is the average degree of the network. The first four terms on the right-hand side of Eq. (2) represent the creation of
a new node with preferential attachment, while the last two represent the merging of two randomly chosen nodes. Eq. (2)
is similar to ‘‘network A’’ in Ref. [12] except for the coefficients that represent preferential attachment. We assume that the
network is sufficiently large and sparse that we can safely ignore the effects of common neighbors andmultiple connections
during the merging step.

From Eq. (2), the evolution equation for the degree distribution, P(k, t) = N(k, t)/N becomes

∂P(k, t)
∂t

= δk,1 +
k − 1
k̄

P(k − 1, t) −


k
k̄

+ 2

P(k, t) +

−
k′+k′′=k

P(k′, t)P(k′′, t). (3)
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Fig. 2. Plot of rescaled N(k) against k/N2/3 for N = 102 , 103 , 104 , and 105 . The solid line represents N(k) ∼ k−γ with γ = 3/2.

Eq. (3) in the steady state where ∂tP(k, t) = 0 can be solved using the Z-transformation (generating function) method
[16,12]. The Z-transformation of the degree distribution is defined as (we use P(k) in place of P(k, t))

G0(z) ≡

−
k=0

zkP(k), (4)

with which we can rewrite Eq. (3) as

G2
0(z) − 2G0(z) + z +

z(z − 1)
k̄

= 0, (5)

which leads to

G0(z) ≃ 1 ± (1 − z)1/2

1 + zG′

0(z)/k̄
1/2

.

Using to the relation

lim
k→∞

P(k) ∼ k−γ
→ lim

z→1
G0(z) ≃ c1 + c2(1 − z)γ−1

+ analytic terms, (6)

we obtain the degree exponent γ = 3/2 [12]. This is identical to the result of SMC, meaning that the degree distribution
is not significantly affected by preferential attachment at all. We confirm this result via numerical simulation: Fig. 2 shows
N(k) for various network sizes (N = 102–105). Note that γ < 2 implies that the average degree k̄ increases with the system
size k̄ ∼ Nξ and the structural cutoff scales as kc ∼ N (1+ξ)/2

∼ Nσ . An explicit calculation of k̄ predicts that ξ satisfies the
relation ξ = (2 − γ )/γ when γ < 2 [11]. Therefore, N(k) scales as

N(k) ≡ N × P(k) ∼ Nk−γ f


k
Nσ


, (7)

where f (x) is a scaling function that is ∼const for x ≪ 1 and decays faster than any power of x when x ≫ 1 [11]. Using
exponent σ = 2/3, we see that N(k) for various N collapse well. The solid line represents the relation N(k) ∼ k3/2. This
shows that the analytical solution (Eqs. (6) and (7)) is in good agreement with the simulations.

The clustering coefficient C is an important indicator of the existence of the hierarchical structure. It is well known that
in a network lacking any hierarchical structure C does not depend on k, whereas in a networkwithwell-defined hierarchical
modules the local clustering coefficient C(k) is a decreasing function of k, i.e. C(k) ∼ k−β [17]. In the SMC model (with no
preferential attachment), C(k) is known to be an increasing function of k [8]. However, as shown in Fig. 3(a), C(k) under the
MC model with preferential attachment is only a slightly increasing (almost flat) function for k (<103 for N = 105). Near
kmax, C(k) shows a clearly decreasing tail approximated as C(k) ∼ k−β withβ = 1.5. This is similar to that of the equilibrium
model studied in Ref. [8]. This implies that the preferential attachments of new nodes result in a more hierarchical modular
structure than the one found in the SMC network model.

The degree–degree correlation is another important measure with which one can characterize the network structure.
According to the sign of the correlation, networks can be classified into two groups: a networks with positive (negative)
correlation is said to show assortative (disassortative) mixing [18]. In general, social networks show assortative mixing
while technological networks (e.g. WWW and the Internet) show disassortative mixing. Several topological and dynamical
properties are known to be affected by the degree correlations [19,20]. We investigate the property of degree–degree
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Fig. 3. Plot of (a) C(k) and (b) ⟨knn(k)⟩ of the MC with preferential attachment model for N = 105 . The solid lines represent (a) C(k) ∼ k−1.5 and
(b) ⟨knn(k)⟩ ∼ k−0.7 , respectively.

correlation by measuring the ⟨knn(k)⟩, the average degree of the neighbors of nodes that have degree k. Unlike the SMC
model [8] where the degree correlation shows a strong assortative mixing for small k, ⟨knn(k)⟩ of the MC model with
preferential attachment slightly increases (but almost flat) for small k (Fig. 3(b)). However, near kmax, ⟨knn(k)⟩ also exhibits
an explicitly decreasing tail. This implies that the tendency of young nodes to connect to old nodes are stronger, clearly an
effect of preferential attachment combinedwith aging. As discussed in Ref. [8], even in the SMCmodel old nodes can become
hubs. The preferential attachment drives such tendency further by enhancing connections between high- and low-degree
nodes (for example see Fig. 1(c)), driving the degree correlation to be more negative.

In this study, we explored the characteristics of the MCmodel with preferential attachment. Through analytic derivation
and numerical simulation we showed that the degree exponent γ is not affected by the preferential attachment. However,
we also found that the preferential attachment causes a hierarchical modular structure to emerge between high- and low-
degree nodes. We also find that the degree correlation becomes negative (or disassortative) for large k. From these results,
we expect that many technological networks such as the software network [15] could be better modeled via theMC process
with preferential attachment.
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