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a b s t r a c t

We study the effects of the underlying topologies on a single feature perturbation imposed
to the Axelrod model of consensus formation. From the numerical simulations we show
that there are successive updates which are similar to avalanches in many self-organized
criticality systems when a perturbation is imposed. We find that the distribution of
avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and
random networks. However, on scale-free networks with the degree exponent γ ≤ 3
we show that the avalanche size distribution does not satisfy the FSS ansatz. The results
indicate that the disordered configurations on two-dimensional lattices or on random
networks are still stable against the perturbation in the limit N (network size) → ∞.
However, on scale-free networkswith γ ≤ 3 the perturbation always drives the disordered
phase into an ordered phase. The possible relationship between the properties of phase
transition of the Axelrod model and the avalanche distribution is also discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, there have been great attempts to understand how self-organization, adaptation, and cooperation arise various
complex patterns in social systems [1–3]. The basic concepts and tools developed in statistical mechanics and nonlinear
dynamics have been shown to be useful to find the generalmechanism behind social systems [2]. In particular, the spreading
of culture and the formation of cultural domains have attracted many physicists due to their complex behaviors and the
relevance to the order–disorder transition in statistical mechanics [4–8]. Here, the culture is defined by the set of individual
attributes or features, such as belief, opinion, language and social norm. The cultural domain is defined by the group of people
who share the same cultural traits. In order to study the observed behaviors and the related phenomena in the spreading
and formation of cultural domains, numerical simulations of simple dynamical models have been used [2].

In this spirit, Axelrod introduced a simple model to investigate how the dissemination and formation of cultural
domains arise [4,5] based on two assumptions: (i) individuals more likely interact with others if they share more of their
cultural attributes; (ii) whenever the interaction occurs the number of sharing features between the interacting individuals
increases. Thus the interaction always decreases the cultural differences between interacting individuals. These assumptions
qualitatively resemble the traditional models of statistical physics, in which the local interaction tends to decrease the total
energy. However, Axelrod showed that the local convergence by interaction causes social cleavages which lead to a global
polarization when the cultural traits are diverse enough [4]. More precisely, in the Axelrod model each individual is placed
on each site of a lattice. The cultural attributes of each individual aremodeled by a set of F features. Each feature takes one of
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theQ possible integer valueswhich represents a cultural trait. Recent studies have shown that there exists a certain valueQc
at which the system undergoes a order–disorder transition. When Q < Qc the system is in an ordered phase (monocultural
phase) and when Q > Qc it is in a disordered phase (multicultural phase). [6,8].

The study on the stability of the disordered phase has theoretical and practical importance as addressed in Ref. [9]. Recent
study revealed that the competition between the single feature perturbation rate and the relaxation time plays an important
role to determine the steady state configuration of the Axelrod model against the perturbation [9]. When the perturbation
rate is smaller than the inverse of the characteristic time, a disordered phase in a finite two-dimensional system evolves
into an ordered phase. On the other hand, when the perturbation rate is larger than the inverse of the characteristic time,
the disordered phases are stable against the perturbation. This result implies that when there is enough time to spread the
applied perturbation, the repeated action of these perturbations drives the disordered phase into an ordered phase if the
system is finite. Thus, the disordered phases are unstable in finite systems [9,10].

Likemany other phase transitions [11–13], the property of phase transition of the Axelrodmodel is also crucially affected
by underlying topologies. In particular, on lattices and random networks (or small-world networks) [14,15] the transition
occurs at a finite Qc when the network size, N → ∞. However, on the scale-free (SF) networks with a power-law degree
distribution, P(k) ∼ k−γ ,Qc diverges in the limit N → ∞ and the model is always in the ordered state when γ = 3 [7].
Moreover, many social and economical interactions are known to form complex networks (for example, see the Ref. [16]).
Therefore, investigating the effect of underlying topology on the formation and spreading of cultural domains is very
important to understand the dynamical properties of various pattern formations in the real world.

So far, there is no systematic study on the processes of how the repeated action of single feature perturbations spreads
over the entire system andwhether finally the system reaches an ordered state or not. In this paper we investigate the effect
of the various underlying topologies on the spreading of the repeated action of single feature perturbation and show that
the spreading is affected by the underlying topology. For this purpose we use complex networks as well as two-dimensional
(2D) square lattices. In the vicinity of the observed Qc , the disordered configuration of the Axelrodmodel has various sizes of
different cultural domains [6]. In this study, we show that the successive applications of single feature perturbations cause
various sizes of avalanches which merge the different domains into a single ordered domain in finite systems. Based on the
finite-size scaling analysis of avalanche size distribution, we find that the Axelrod model on 2D square lattices and random
networks requires avalanches of infinite size to reach an ordered phase when N → ∞. However, on SF networks with
γ ≤ 3, we show that the disordered configuration can evolve into an ordered configuration with only finite avalanches. As
we shall show, these different behaviors on various topologies are closely related to the transition property of the Axelrod
model.

The paper is organized as follows. In Section 2 we present the definition of the original Axelrod model and single feature
perturbation model. The used underlying networks are also provided in Section 2. The numerical results for the spreading
of single feature perturbations are presented in Section 3, and summaries and discussions are in Section 4.

2. Model definitions

2.1. Original Axelrod model

The Axelrod model [1,4] on complex networks is defined as follows [7]: Each individual is located at each node in the
network of size N . The state of each agent i is characterized by an F component vector (cultural features),


σif


, where

f = 1, . . . , F . Initially, an integer in the interval [1,Q ] is randomly assigned to each σif . At each time step, the state of each
agent is updated by the following dynamic rule: (1) Select a directly connected pair of nodes (i, j) at random. (2) Calculate
the overlap (or the number of the shared features) between agents i and j, ℓ(i, j) =

∑F
f=1 δσif ,σjf . Here, δn,m represents the

Kronecker’s delta. (3) If 0 < ℓ(i, j) < F , then the sites i and j are said to be active. These active sites interact to each other
with probability ℓ/F . In the case of interaction, choose the f ′th component at random among those having different values
between i and j (i.e., σif ′ ≠ σjf ′ ) and update σif ′ = σjf ′ . (4) If ℓ = 0 or ℓ = F then the bond (i, j) becomes inactive and nothing
happens. In the following simulations we fix the value of F to be 10.

In any finite system, the dynamics of the Axelrod model leads to an absorbing state, characterized by the absence of
active bonds. In the Axelrod model, two different absorbing states are possible. When Q is small, each agent can interact
to its nearest neighbors with high probability. As a result, the system evolves into an ordered or monocultural state
(σif = σjf , ∀(i, j), ∀f ) for small Q . On the other hand, when Q is large, the interaction probability (or ℓ) significantly
decreases, and the system settles into a disordered or multicultural state.

2.2. Single feature perturbation and relaxation (SFPR)

In order to investigate the stability of a disordered phase in the Axelrod model, a single feature perturbation model was
introduced [9]: (i) repeat the dynamic processes (1)–(4) in Section 2.1 until the system reaches an absorbing state. (ii) A
node i is randomly selected. Then a randomly selected component of node i, σif , is changed to an arbitrary value s (∈ [1,Q ])
(single feature perturbation). (iii) Repeat the procedure (i)–(ii) (relaxation). The perturbation–relaxation procedures cause
successive updates.
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Fig. 1. (Color online) Plot of P(s, L) for various L on two-dimensional lattices when F = 10 and Q = 60. The solid line represents the relations P(s) ∼ s−1.5

when Q = 60. Upper inset: scaling plot of P(s, L) for Q = 60 with ν = 1 and τ = 1.5. Lower inset: scaling plot of P(s, L) for Q = 200 with ν = 1 and
τ = 1.5.

2.3. Underlying networks

In the following simulations, we consider two types of different network topologies, random networks and SF networks,
as well as a 2D square lattice. For the construction of the random network, we use the Erdős–Rényi (ER) networkmodel [14].
The degree distribution of ER networks is known to satisfy the Poisson distribution which indicates that the degree
distribution is homogeneous. In contrast to ER networks, SF networks show high heterogeneity in the degree distribution.
In many systems, such as the Ising model, the critical behaviors are crucially affected by the topological heterogeneity [17].
In order to generate such SF networks with tunable γ , we use the static model suggested by Goh et al. [18]. In this model,
a weight wi = i−α is assigned to each node i (i = 1, 2, . . . ,N), where 0 ≤ α < 1. By adding a link between unconnected
nodes i and jwith probability wiwj/(

∑N
n=1 wn)

2, one can obtain a network whose degree distribution satisfies a power-law
P(k) ∼ k−γ . In the static SF network model, γ is related to α as γ = (1 + α)/α. Thus, by adjusting α we obtain a network
with any γ (>2).

3. Avalanche distribution of SFPRs

3.1. On a two-dimensional square lattice and on random networks

On one- and two-dimensional lattices, only the completely ordered configurations are known to be stable and other
absorbing configurations are unstable [9]. Klemm et al. [9] numerically showed that under the repeated action of SFPRs the
disordered phase evolves into an ordered phase in the finite-size systems. Their measurement also showed that there exist
many perturbation–relaxation procedures between the changes in order parameter. This is reminiscent of the punctuated
equilibria in self-organized criticality (SOC) [19].

From the numerical simulations we find that the SFPR causes successive updates of neighboring sites until the system
reaches the other absorbing configuration. Such a successive update is usually called an avalanche. The avalanches in the
perturbed Axelrod model play a very crucial role to drive the system into an ordered state. For the systematic analysis we
measure the distributions of avalanche sizes from the avalanches which occur during the repeated applications of SFPRs to
an initial disordered phase to reach the final absorbing phase. Here, the avalanche size, s, is defined by the total number
of updates in a given SFPR. In the perturbed Axelrod model on 2D lattices, we find that the distribution of s satisfies the
finite-size scaling (FSS) ansatz:

P(s) = s−τ F


s
sc


. (1)

Here F (x) represents a universal scaling function. When the linear dimension, L, of the underlying lattice goes to infinity,
the cutoff sc diverges as sc ∼ Lν . Eq. (1) can be rewritten as

P(s, L) = L−ντ f
 s
Lν


, (2)

where f (x) is another universal function. The universal function f (x) scales as f (x) ∼ x−τ for x ≪ 1 and saturates to a
constant value when x ≫ 1 [19]. Fig. 1 shows the simulation results of the perturbed Axelrod model on 2D lattices when
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Fig. 2. (Color online) (a) Plot of P(s,N) on ER networks for various N . The solid line denotes the relation P(s) ∼ s−1.5 . Inset: Plot of P(s) measured on the
ER network and SF network with γ = 5 when N = 1000. (b) Scaling plot of P(s,N) with ν̄ = 1 and τ = 1.5.

F = 10 and Q = 60. With these values of F and Q , the unperturbed Axelrod model on the 2D lattice is known to be in the
disordered phase [7]. From the data in Fig. 1 we obtain τ = 1.50 ± 0.01 and ν = 0.99 ± 0.01. The upper inset of Fig. 1
shows that the scaling plot of P(s, L) using the obtained τ and ν satisfies the relation (2) very well. The lower inset shows
the same plot for F = 10 and Q = 200, which shows that for any value of Q (>Qc)P(s, L) satisfies Eq. (2).

In Fig. 2 we show the P(s,N) measured on ER networks with ⟨k⟩ = 4, F = 10 and Q = 200. Here we use the size of the
network, N , for the finite-size scaling analysis instead of the linear dimension L of the 2D lattice. The used values of F and
Q insure that the system is in the disordered configuration when the dynamic rules (1)–(4) are accomplished (for example,
see Fig. 5(a)). As shown in Fig. 2, we find a similar scaling behavior of P(s,N) in the perturbed Axelrod model on the ER
networks with Eq. (2) as Ref. [20]

P(s,N) = N−τ ν̄ f (s/N ν̄). (3)

From the data in Fig. 2(a) we obtain τ = 1.51± 0.02 and ν̄ = 0.99± 0.07. In Fig. 2(b) we display the scaling plot of P(s,N)
using the obtained τ and ν̄, which verifies the FSS ansatz (3).

Note that P(s → ∞, L) and P(s → ∞,N) decrease as L and N increase, respectively (see Figs. 1 and 2). This implies
that in order to reach the ordered phase the dynamic procedure requires avalanches whose sizes are larger than L or N .
However, the probability for such a large avalanche to occur approaches to 0 as L or N increases. Therefore, in the limit
L → ∞ or N → ∞, the system cannot reach the ordered phase and the disordered phase becomes stable against the
repeated application of SFPRs on 2D lattices or ER networks. We find the same results on SF networks with γ > 3 (see the
inset of Fig. 2(a)) like the other critical phenomena [17] and dynamical processes [21,22].

3.2. On SF networks with γ ≤ 3

On SF networks with γ ≤ 3, we find completely different scaling behaviors of P(s,N) from those on 2D lattices and ER
networks. As shown in Fig. 3, we find that P(s,N) decays as

P(s) ∼ s−τ , (4)

with τs = 1.49 ± 0.01 when s < 104. Then, P(s) saturates to the same constant value for s > 104, regardless of N . To
satisfy the normalization condition, P(s) for s > 104 should have a cutoff scut which satisfies P(s > scut) = 0 in the limit
N → ∞ and ν̄ becomes zero. This indicates that in order to reach an ordered configuration on SF networks, the dynamics
of the perturbed Axelrod model requires only a finite size of avalanches even in the limit N → ∞. Thus, the repeated SFPRs
always drive the system into an ordered phase on SF networks with γ ≤ 3. As we will show in Section 3.3, when γ ≤ 3 the
Axelrod model is always in the ordered phase in the limit N → ∞. Therefore, the disordered phase observed in the finite
N is unstable against the perturbation, and the system easily evolves into an ordered phase even when s is finite. Since the
static SF networks are weakly disassortative when γ ≤ 3 [23], we also measure the P(s,N) on the assortative networks
(see the inset of Fig. 3). The assortativity of networks is adjusted by the method in Ref. [24]. As shown in the data we find no
difference in P(s,N) between assortative and disassortative networks.

In order to verify the convergence of smax on SF networks with γ ≤ 3, we measure the average value of maximum
avalanche size ⟨smax⟩. As shown in Fig. 4, ⟨smax⟩ abruptly increases when N < 2000 on SF networks with γ ≤ 3. Then it
saturates to some constant value (∼106) for N ≥ 2000. This shows a clear agreement with the expectation based on the
scaling behavior of P(s,N) in Fig. 3 and Eq. (4). For a comparison, we also display ⟨smax⟩ on 2D lattices in the inset of Fig. 4
which clearly shows that smax increases as L increases.



Y. Kim et al. / Physica A 390 (2011) 3989–3995 3993

P
(s

,N
)

s

N=1000

N=2000

N=5000

100

100 101 102 103 104 105

s
100 101 102 103 104 105 106

10–2

10–4

10–6

10–8

P
(s

,N
)

10–2

10–1

10–3

10–4

10–5

10–6

10–7

Fig. 3. (Color online) Plot of P(s,N) on SF networks with γ = 2.7 when F = 10 and Q = 200. The solid line represents the relation P(s) ∼ s−1.5 . Inset:
Plot of P(s,N) on assortative SF networks. The solid line corresponds to τ = 1.5.

108

107

106

8×105

4×105

105

<
S m

ax
>

<
S m

ax
>

N

104

10 100

N
2000 4000

Fig. 4. Plot of ⟨smax⟩ for SF networks with γ = 2.5. Inset: Plot of ⟨smax⟩ for 2D lattices.

3.3. Origin of the differences in P(s)

In order to understand the observed differences in P(s,N) on SF networks with γ ≤ 3 and on 2D lattices or ER networks,
we measure Qc at which the phase transition of the original Axelrod model occurs. As shown in Fig. 5(a) and (b), Qc(N) on
each network shows completely different behaviors. On ER networks (or SF networks with γ > 3), Qc converges to a finite
value in the limit N → ∞. But on SF networks with γ ≤ 3 we find that Qc diverges as

Qc ∼ Nα, (5)

where the exponent α increases as γ decreases. The result indicates that the system is always in the ordered phase when
γ ≤ 3 in the limit N → ∞. Similar behavior was observed in the Ising model on SF networks [17]. For the Ising model, the
critical temperature diverges in the limit N → ∞ for γ ≤ 3. On the other hand, the transition occurs at finite temperature
when γ > 3. This behavior can be qualitatively understood from the topological properties of the underlying network. The
effect of hubs becomes crucial when γ ≤ 3 like the epidemic spreading [25]. Through the interactions, the nodes connected
to the hubs follow the cultural traits of the hub tominimize the cultural differences. Thus, the largest hub becomes a cultural
leader. Moreover, the ultrasmall-world property [26] observed when 2 < γ ≤ 3 can facilitate the spreading of cultural
domains over the whole network. As a result, the Axelrod model is always in an ordered (monocultural) phase when γ ≤ 3.
On the other hand, when γ > 3 the degree of the hub in the SF network becomes relatively small compared to those for
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γ ≤ 3. This implies that the effect of the hub can be ignored for large γ . Thus, there exists competition between individuals,
which hinders the consensus formation of the Axelrod model on SF networks with γ > 3.

From Eq. (5), we find that the disordered phases observed on the finite SF networks with γ ≤ 3 are metastable. When
SFPRs are repeatedly applied to these disordered phases, the perturbations play the role of random fluctuations which drive
themetastable phases into an ordered (stable) phase. As a result, the observed disordered phases on finite SF networks with
γ ≤ 3 can easily evolve into an ordered phase when SFPRs are repeatedly applied. Moreover, if the system is in the ordered
phase then the avalanches with finite s drive the system back to the unperturbed configuration. On the other hand, since
the given value of Q ensures that the Axelrod model on 2D square lattices or ER networks is in a disordered phase when
N → ∞, infinite avalanches are needed to drive a disordered phase into an ordered phase. However, such huge avalanches
hardly occur on 2D square lattices or ER networks as shown in Figs. 1 and 2. Therefore, on 2D lattices or ER networks the
SFPRs cannot drive the system into an ordered phase in the limit N → ∞.

4. Summary and discussion

We study the effect of the underlying topologies on the spreading of single feature perturbation in the Axelrod model.
Fromnumerical simulations,we find that the distribution of avalanche sizes induced by the repeated action of SFPRs satisfies
the FSS ansatz (1)–(3) on 2D lattices and on random networks. However, on SF networks with γ ≤ 3 we find that P(s,N)
does not depend on N . The results imply that only when the underlying topologies are highly heterogeneous (γ ≤ 3) the
repeated action of SFPRs can drive the disordered configuration of the Axelrod model into an ordered one.

The origin of the different behavior in P(s,N) can be understood by the relationship between the underlying topology
and Qc . As mentioned in Fig. 5, there is no phase transition and the system is always in the ordered phase, when γ ≤ 3 in
the limit N → ∞. Thus, the disordered phases observed in a finite system are unstable against the repeated action of SFPR,
because the hub plays a crucial role in the consensus formation as a cultural leader. However, in homogeneous networks
(or SF networks with γ > 3), there exists a finite Qc and the disordered phase is stable against SFPR, because of the absence
of a hub (or cultural leader) in the system. These results indicate that the cultural leader changes its features and then all
agents follow it if the interaction topology is an SF network with γ ≤ 3. Since the interaction topologies between each
individual in many real social networks belong to SF networks with γ < 3 [16], the following example can provide an
important insight into the understanding of dynamical properties. An interesting and practical example is the spreading of
new technologies, such as the mobile phone. Since the recent development of mobile technology, the use of mobile phones
has been gradually increasing and more than 90% of US citizens are now using mobile phone technology [27]. This clearly
shows thatmobile phone technology almost replaces land-line communication. In this example, themobile phone and land-
line are two equally-functional alternatives. Thus, it clearly shows that the repeated action of random changes between two
equally-functional alternatives leads to the ordered phase on SF networks with γ ≤ 3 because the interaction topology in
social networks is known to be a SF network with γ < 3 [16].

In real society, the effect of random change in cultural traits has drawn long-lasting research interests among various
branches of science. Another obvious example is language. Pronunciation, grammar, and spelling have been changed at
random among the equally-functional alternatives. The evolution of babies’ names is also an example of random changes
in cultural traits [28]. Such random changes are usually called cultural drift [1] and have been proposed as an appropriate
model for the way in which equally-functional elements come and go in society [29,30]. Similar random changes in genetic
evolution were also observed, which is called Wright’s genetic drift [31]. In physics, cultural drift has been rephrased as
random noise [9]. In our study we show how the underlying topologies affect the spreading of a random change. Therefore,
our study takes a first step in the direction of a systematic study on the spreading of cultural drift in more realistic systems.
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