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a b s t r a c t

We study the novel three-species reaction–diffusion processes of scale-free networks that
are significantly different from numerical calculations manipulated on regular and small-
world lattices. The inverse particle density for the three-species process scales according
to the power-law with a scaling exponent α = 1.5 for γ > 3. It is, however, found from
numerical results that the inverse particle density scales in a different way depending
on time t when γ < 3. In the early time regime, α ' 1.5, but the inverse particle
density increases exponentially over time. We also discuss the possible relationship with
the dynamical properties of randomwalks. In particular, wemeasure the ratio between the
number of inactive and active bonds which shows the segregation of the particles.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

During the past three decades, considerable efforts have been directed toward theoretical and numerical investigation
of the reaction segregation phenomena in physics, chemistry, biology, and chemical engineering. There have been many
important breakthroughs in analytical and numerical methods to address reaction–diffusion processes. The seminal work
of Ovchinnikov and Zeldovich [1] was crucial in research of the segregation phenomenon, and the binary reaction has
primarily been investigated in relation to the processes of ternary reactions in many scientific phenomena [2–7]. The
segregation of reactants has been investigated in a reaction–diffusion process based on the assumption that the scaling
form for A + B → C has almost been verified by computer simulation and experiment [8,9]. To date, analytical and
numerical methods for chemical reaction processes have led to results obtained from the deterministic rate equations and
the field theories. However, at present, there exist intriguing methods using intrinsically and novel for both small-world
and scale-free networks. Nevertheless, there remain open and innovating problems that need to be studied in relation to
the reaction–diffusion process.
While multi-species reactions may occur rarely in several scientific fields, several researchers of reaction–diffusion

processes ofmulti-species have treated this as importantly asmore complicated reactions. Even thoughmuch effort has been
directed toward developing the two-species reaction–diffusionmodel in Barabási–Albert and other scale-free networks [10,
11], a three-species reaction–diffusion system of for scale-free networks has not yet been intensively investigated. In this
paper, we focus on the three-species reaction–diffusion process using a static model for scale-free networks. In particular,
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we numerically estimate the inverse particle density in the three-species reaction–diffusion process. The fraction and ratio
from a numerical simulation is also calculated.

2. Theory

The inverse particle density of the surviving particles in the reactions of A+A→ 0 and A+B→ 0 type scales classically
on a d-dimensional regular lattice as

1
ρ(t)
−
1
ρ0
∼ tα, (1)

where ρ(t) is the particle density at t = t , and ρ0 is the initial particle density. In a d-dimensional space the scaling exponent
α is known to satisfy d/dc for d ≤ dc and α = 1 for d > dc , and the critical dimension dc = 2 for A + A → 0, dc = 4 for
A+ B→ 0, and dc = 2 for A+ B+ C → 0.
The reaction–diffusion process has been studied numerically: both the global reaction rate and the reaction front

increased as t1/2 at very early times [12]. From the decay process [13,14] of A + 2B → C , the diffusion equation under
the initial reactant segregation is given by

∂

∂t
A(x, t) = DA∇2A(x, t)− kA(x, t)B2(x, t), (2)

where A(x, t) and B(x, t) are the particle densities,DA is the diffusion coefficient of reactants A(x, t), and k is themicroscopic
reaction constant. From the lowest order of the perturbation theory, the global reaction rates R(t) on both the early time
and long time behaviors scale as a power law t1/2 and t−1/2, respectively. In the case of the A + B → 0 the process on a
regular lattice network was introduced for Lévy walks using the following reaction–diffusion equation [15]:

∂

∂t
A(Er, t) = DALA(Er, t)− KA(Er, t)B(Er, t), (3)

where A(Er, t) and B(Er, t) are the particle densities, DA a generalized diffusion coefficient, K the reaction rate, and L the
operator for Lévy-enhanced diffusion. The particle densities in this case can be calculated as

A(t) = B(t) ∼ td/2β for β > d/2, (4)

where three marginal values are β = 1 for d = 2, β = 3/2 for d = 3, and β = 2 for d = 4.
It was found from the two-particle reaction process [15] that the particle density for Lévy walks is distributed as

P(n) ∼ n−1−ν for n > 0 and 1 < ν < 2, and that the segregation disappears in d = 3 dimension for ν < 3/2. Also,
asymptotic long-time scaling has been found in the ternary reaction–diffusion processwith initially separated reactants [14].
In the following a one-dimensional diffusion-reaction system of A + B + C → 0 is introduced such that A(x, t), B(x, t),

and C(x, t) are the particle densities for three-species A, B, and C existing at a position x at time t . We assume that the three
species are initially distributed separately on the axis x. The rate equation for A(x, t) has the form:

∂

∂t
A(x, t) = DA∇2A(x, t)− κA(x, t)B(x, t)C(x, t), (5)

where DA is the diffusion constant for one species A, and κ is the reaction rate. The solution for A(x, t), B(x, t), and C(x, t)
is obtained as A(x, t) = A0φ( x

at1/2
), B(x, t) = B0φ( x

bt1/2
), and C(x, t) = C0[1 − φ( x

ct1/2
)], where φ(x) = 1

√
π

∫ x
−∞
dxe−x

2
.

From the result of previous works [8,16], given that the global reaction rate R(t) is defined by R(t) =
∫
∞

−∞
dxR(x, t) for

R(x, t) = κA(x, t)B(x, t)C(x, t), the time dependence of the global reaction rates R(t) was shown to behave as R(t) ∼ t1/2
(t−1/2) in the early (long) time limit.
In scale-free networks, the Laplacian operators in Eq. (5) should be replaced by the network Laplacian operator. For

example, the matrix representation N × N of the network Laplacian L is defined as follows: the diagonal elements are
Lxx = kx (kx = a number of links in node x), and the off-diagonal elements are Lxy = −1 if node x and y are connected,
Lxy = 0 otherwise. This result on numerous important physical quantities such as that the first passage time and spreading
velocity will be different from those expected in regular lattices [17]. Thus, theoretical studies on diffusion-reaction systems
in scale-free networks are of particular interest.
The decay process in a reaction–diffusion systemwith three species on small-world lattices [18] was recently discussed,

and its global reaction rate has also been analyzed by numerical simulation before and after the crossover. The bimolecular
chemical reaction in scale-free networks [19]was studied for the generation of the depletion zone and the segregation of the
reactants. It was found that the reaction–diffusion processes in scale-free networks are different in nature compared with
regular lattice models, due to the small diameter of the networks and the existence of hubs. Similarly, the inverse particle
density in an uncorrelated scale-free network [20] is shown to cross over to a linear behavior. Gallos and Argyrakis [21] have
dealtmainlywith the reaction–diffusion process of two species on a scale-free network between correlated anduncorrelated
configuration models, and they revealed that the two models are identical when γ = 3.0.
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Among several scale-freemodels [22–24],we introduce the staticmodel reported byGoh et al. [24] as follows: there areN
nodes (i = 1, 2, . . . ,N) as a system initiated by Erdös–Rányi model, and the weight pi = i−α is assigned to each node. After
we select two nodes (i, j)with probabilities equal to the normalizedweights, we add a link between themunless one already
exists. This procedure is repeated until mN degrees are made in the system, where the mean degree is 2m. It is then found
that the degree distribution scales as the power law, P(k) ∼ k−γ , where the scaling exponent γ is given by γ = (1+ α)/α
for the control parameter α in [0, 1). For our reaction–diffusion process, the model will be henceforth constructed with a
characteristic degree distribution p(k) ∼ k−γ on a static model [24] in scale-free networks, which has the fixed number of
nodes N0 and a scaling exponent γ . The static method is to some extent different from the Barabási–Albert model [25] and
the correlated and uncorrelated configuration models [21] in scale-free networks, but we expect to obtain similar results to
these methods.

3. Numerical results and conclusion

To numerically calculate the particle density, we analyze the reaction–diffusion process of A+ B+ C → 0 on the static
model. We assume that three species of reactants are distributed randomly. For our diffusion-reaction system, after one
species reactant is chosen at random, the direction of its movement is chosen at random with equal weight to one of its
linked neighbor nodes. When two species of reactants meet each other on the same node, by the intermediate process
existing concurrently, the combined two species of reactants can be formed. If two species of reactants meet the third
reactant, these reactants react and immediately leave the network.
To understand the spatial contribution of three-species, we can calculate the number of contact particles as a function

of the time step. At time t the fraction ρA+AB+AC (t) is defined as the number of contacts between three-species for over the
total possible number of contacts:

ρA+AB+AC (t) = ρA(t)+ ρAB(t)+ ρAC (t), (6)

where ρAB and ρAC are, respectively, A+ B and A+ C intermittent reactants. The particles (A, AB and AC) can be regarded as
active particles that are similar to species A in the A+ B→ 0 system. In Fig. 2, we also measure the inverse particle density
of the active particles, which contains A species, as

1
ρA+AB+AC (t)

−
1
ρ0
=

1
ρA(t)+ ρAB(t)+ ρAC (t)

−
1
ρ0
. (7)

In this case the ratio QABC is calculated as

QABC =
ρABC

ρAB + ρBC + ρAC
, (8)

where ρABC denotes the number of contacts between three-species compared with the number of three-species ρA, ρB, and
ρC denotes the existence of depletion and segregation zones. ρBC are also B + C intermittent reactants. In this scheme,
we make use of Eqs. (7) and (8) to compute the inverse particle density of the active particles and the fraction on scale-free
networks. The inverse particle densities and fraction from the results of the obtainedmeasures can be compared numerically
with other cases of scale-free networks.
To simulate our process, the respective particle density for A, B, and C corresponds to the value of 10% on a number of

nodes ρ0 = 1.5× 104 of the scale-free network. The diffusion constant in our case takes the same value for each reactant,
and the reaction rate is K = 1/500. During a simulation performed on 5 × 103 realizations, we numerically estimate the
particle density, fraction, and ratio in the reaction–diffusion process of A + B + C → 0 on the static model in scale-free
networks.
As can be seen from Fig. 1, the particle density 1/ρA(t)-1/ρ0 has an exponential form, as the scaling exponent γ decreases

on scale-free networks.
In Fig. 2, wemeasure the density of all kinds of particles having particle A. From the data, we find that γ = 3 is marginal.

Themeasured scaling exponent α is 1.5 for γ ≥ 3. In the case of γ = 2.5 and t < 10, we obtain α ≈ 1.5 and increases to 2.0
for an intermediate time interval, 10 < t < 50. As γ is decreased further, the slope of the intermediate interval continuously
increases and decays exponentially when γ → 2.0. From the definition of our model, the dynamics can be analyzed by a
two-stepped two particle reaction. In the first step, intermediate particles such as AB, AC, and so on are created. Then, in the
next step, the intermediate particles are annihilated when they encounter the proper counter particles. Therefore, as noted
in Ref. [26], the second moment of P(k) plays an important role in predicting the dynamical behavior of our model, which
shows good agreement with the present numerical results. However, the measurement presented in Fig. 2 shows that the
scaling behavior of three species model is completely different from that of Gallos’ calculations [19].
As shown in Fig. 3, we find that QABC increases in different ways depending on γ . In the initial transient regime (t < 10),

QABC of both γ = 2.5 and γ = 3.5 increase in the same manner. For t > 10, QABC for γ = 2.5 satisfies the power-law
QABC ∼ t1.2. However, QABC for γ = 3.5 increases much slower than that for γ = 2.5. The crossover occurs around t ≈ 10
which coincides with the results obtained in Fig. 2.
In summary, we have studied the reaction–diffusion process A+B+C → 0 of three species on a staticmodel of scale-free

networks. The inverse particle densities and fraction of three species are calculated numerically. There exists a crossover
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Fig. 1. (Color on line) Particle density 1/ρA(t)-1/ρ0 on scale-free networks of γ = 2.0 (black), 2.5 (red), 3.0 (green), 3.5 (dense blue), and 4.0 (blue).

Fig. 2. (Color on line) Fractions 1/ρA+AB+AC (t)− 1/ρ0 obtained from simulated results for γ = 2.0 (black), 2.5 (red), 3.0 (green), 3.5 (dense blue), and 4.0
(blue) of scale-free networks. The black solid lines represent α = 1.5 and the green line denotes α = 2.0.

having different scaling exponents between short and long time regimes. An analogous situation arises in the two-species
reaction. The most interesting result obtained here is that the scaling exponents of the particle density are slightly different
from that of A+ A and A+ B reaction [15], but the inverse particle densities and fraction show a increasing trend at a long
time limit, similar to one or two species diffusion-reaction systems. It is found that the scaling exponents of the particle
density presented are smaller than those of a two-species reaction [19–21]. In order for two-species of reactants to meet
each other, the second moment become a crucial factor. While this lends itself to a better understanding of the simulated
data, it diverges in the region of γ < 3.0. Thismeans that two-species reactants have extremely high probabilities ofmeeting
in the hubs in scale-free networks.
Furthermore, we have found that the chemical reaction of three species of reactants occurs equivalently in both regular

and small-world networks at an early time regime, but the decay process in a small-world network proceeds slightly faster
than in the case of a regular network in a long-time regime. It is anticipated that the calculations of reaction–diffusion
processes will continue to increase in importance in the future and potential to impact challenging problems in theoretical
physics and chemistry. We believe that our model will be useful in other reaction–diffusion studies of multi-species.



1272 Ki-Ho Chang et al. / Physica A 388 (2009) 1268–1272

Fig. 3. (Color on line) Ratios QABC obtained from simulated results on scale-free networks of γ = 2.5 (red square) and 3.5 (red circle). The dashed line
denotes QABC (t) ∼ t1.2 .

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea
government (MOST) (R01-2006-000-10470-0 and R01-2006-000-11233-0) and by the ‘‘Development of Technology for
Very-Short-Range Forecast and its Response’’ and ‘‘Research for the Radar Application’’ of the National Institute of
Meteorological Research (METRI) funded by Korea Meteorological Administration.

References

[1] A.A. Ovchinnikov, Y.B. Zeldovich, Chem. Phys. 28 (1978) 215.
[2] A. Yen, R. Kopelman, Phys. Rev. E 56 (1997) 3694.
[3] H.K. Henisch, Crysatal in Gels and Liesegang Rings, Cambridge University Press, Cambridge, 1988;
A. Blumen, J. Klafter, G. Zumofen, in: I. Zschokke (Ed.), Optical Spectroscopy of Glasses, Reidel, Dordrecht, Holland, 1986.

[4] D. Toussaint, F. Wilczek, J. Chem. Phys. 78 (1983) 2642.
[5] P. Meakin, H.E. Stanley, J. Phys. A 17 (1984) L173.
[6] G.T. Dee, Phys. Rev. Lett. 57 (1990) 275.
[7] S.K. won, S.Y. Yoon, Y. Kim, Phys. Rev. E 73 (2006) 025102;
S.K. won, S.Y. Yoon, Y. Kim, Phys. Rev. E 74 (2006) 021109;
S.C. Park, H. Park, Phys. Rev. Lett. 9 (2005) 065701; Phys. Rev. E 71 (2005) 016137.

[8] L. Galfi, Z. Racz, Phys. Rev. A 38 (1988) R3151;
Y.E.L. Koo, L. Li, R. Kopelman, Mol. Cryst. Liq. Cryst. 183 (1990) 187.

[9] Y.E.L. Koo, R. Kopelman, J. Stat. Phys. 65 (1991) 893;
Z. Jiang, C. Ebner, Phys. Rev. A 42 (1990) 7483.

[10] S. Boccaletti, V. Latora, Y. Moreno, M Chavez, D.U. Hwang, Phys. Rep. 424 (2006) 175;
S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079;
M.E.J. Newman, SIAM Review 45 (2003) 167.

[11] A.L. Barabási, Physica A 311 (2002) 590.
[12] H. Taitelbaum, S. Halvin, J.E. Kiefer, B. Trus, G. Weiss, J. Stat. Phys. 65 (1991) 573.
[13] S. Cornell, M. Droz, B. Chopard, Phys. Rev. A 44 (1991) 4826;

S. Cornell, M. Droz, B. Chopard, Physica A 188 (1992) 322.
[14] A. Yen, Z.Y. Shi, R. Kopelman, Phys. Rev. E 57 (1998) 2438.
[15] G. Zumofen, J. Klafter, M.F. Shlesinger, Phys. Rev. Lett. 77 (1996) 2830.
[16] K. Kim, K.H. Chang, J. Phys. Soc. Jpn. 68 (1999) 1450.
[17] E.M. Bolt, D. ben-Abraham, New J. Phys. 7 (2005) 26;

M. Barthelemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Let. 93 (2004) 178701.
[18] K.H. Chang, K. Kim, M.K. Yum, J.S. Choi, T. Odagaki, J. Phys. Soc. Jpn. 74 (2005) 2860.
[19] L.K. Gallos, P. Argyrakis, Phys. Rev. Lett. 92 (2004) 138301.
[20] M. Catanzaro, M. Boguñá, R. Pastor-Satorras, cond-mat/0407447.
[21] L.K. Gallos, P. Argyrakis, cond-mat/0503234.
[22] F. Chung, L. Lu, Proc. Natl. Acad. Sci. 99 (2002) 15879.
[23] R. Cohen, S. Halvin, Phys. Rev. Lett. 90 (2003) 58701.
[24] K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87 (2001) 278701.
[25] R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74 (2002) 47.
[26] S. Lee, S.H. Yook, Y. Kim, Phys. Rev. E 74 (2006) 046118.

http://arxiv.org/cond-mat/0407447
http://arxiv.org/cond-mat/0503234

	Three-species reaction--diffusion processes on scale-free networks
	Introduction
	Theory
	Numerical results and conclusion
	Acknowledgements
	References


