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Abstract

Dynamical scalings for the end-to-end distance Ree and the number of distinct visited nodes Nv of random walks (RWs) on finite
scale-free networks (SFNs) are studied numerically. 〈Ree〉 shows the dynamical scaling behavior 〈Ree(`, t)〉 = `

α
(γ, N )g(t/`

z
),

where ` is the average minimum distance between all possible pairs of nodes in the network, N is the number of nodes, γ is the
degree exponent of the SFN and t is the step number of RWs. Especially, 〈Ree(`, t)〉 in the limit t → ∞ satisfies the relation
〈Ree〉 ∼ `

α
∼ dα , where d is the diameter of network with d(`) ' ln N for γ ≥ 3 or d(`) ' ln ln N for γ < 3. Based on the

scaling relation 〈Ree〉, we also find that the scaling behavior of the diameter of networks can be measured very efficiently by using
RWs.
c© 2008 Elsevier B.V. All rights reserved.
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For almost a decade there have been many studies on the topological properties of complex networks, since many
structures of physically interacting systems are shown to form nontrivial complex structures [1,2]. In these studies
much effort has been put to investigate the physical origin of complex networks [3]. It has been found that most of
the real web-like systems share several prominent structural features with the small-world networks and the scale-free
networks. The small-world networks [4] are characterized by high clustering and small average path length (APL)
or diameter which is defined as the longest geodesic path between all possible pairs of nodes [1,3]. The scale-free
networks (SFNs) whose degree distribution P(k) satisfies a power law P(k) ∼ k−γ also have the SW property [1,3].
It is well known [5] that random networks (RNs) [6] and small-world networks [4] have very small APL (`) and
diameter (d) which scale as d ∼ ` ∼ ln N , where N is the number of nodes. Recently, Cohen and Havlin [7]
analytically showed that

`(N ) ∼

ln ln N , 2 < γ < 3
ln N/ ln ln N , γ = 3
ln N , γ > 3.

(1)
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For measuring `, the breath-first algorithm (BFA) [8] is mainly used. This algorithm is known to scale as O(N 2). In
this paper, we will show that random walk (RW) can provide more efficient method to find the scaling behavior of d
like Eq. (1).

The early studies on complex networks mainly focused on their topological properties. Recently, the physical
systems whose elements interact along the links in complex networks have drawn much attention. Furthermore a
number of studies have focused on the effects of the underlying topologies on the dynamical properties of such
systems. Many dynamical systems on complex networks show rich behaviors which are far from the mean-field
expectations and affected by the underlying topology [9,10]. For example, the dynamical properties of RWs on
complex networks have been shown to be closely related to the topology of underlying networks [11,12]. Especially,
the average number of distinct visited sites and the average end-to-end distance of RWs on small-world networks
are known to satisfy the scaling law O(p, N , t) = Osat F(p2t, pN ) [12]. Here, p is a density of shortcut (or the
probability that each node has an additional shortcut) and Osat is a saturated quantity.

It is well known that the SFNs have heterogeneous structures in which nodes with anomalously large number of
degrees and nodes with small degrees co-exist [1,2]. In SFNs, the dynamical properties of several systems are affected
by the second moment of degree distribution 〈k2

〉 [13–16]. It is interesting to study how the structural heterogeneity
affects the scaling properties of RWs on changing the degree exponent γ . In this paper, we mainly investigate the
dynamical scaling relation for the end-to-end distance Ree of RWs on finite SFNs with various γ . From the scaling
relation, it will be shown that RWs on SFNs can provide much more efficient method to measure the scaling behavior
of the diameter of finite SFNs than BFA. For the complementary purpose we also study the scaling relation for the
number of distinct visited nodes Nv .

To generate SFNs, we use the static model [17] with the average degree 〈k〉 = 4. In the static model, the weight
wi = i−α is assigned to each node i (i = 1, . . . , N ). Then we choose two different nodes (i, j) with probabilities
wi/

∑
k wk and w j/

∑
k wk , and add an edge between them. In this network γ is given by γ = (1 + α)/α. Thus, by

adjusting α we can obtain various values of γ [17].
Initially a random walker is placed on a randomly chosen node, s, on the network. At the time step t + 1, the

walker jumps to a randomly chosen node among the nearest neighbor nodes of the node where the walker is at t . The
probability P(i, t) to find the walker at node i at t thus follows the relation

P(i, t + 1) =

N∑
j=1

Ai j

k j
P( j, t). (2)

Here, Ai j is the adjacency matrix whose elements are Ai j = 1(0) if two nodes i and j are connected (disconnected).
All quantities are averaged over 100 network realizations and 1000 different initial positions of RWs for each network
realization.

Before discussing the dynamical properties of RWs, we investigate the topological property of the static SFNs
which we use. In complex networks, there are two characteristic distances, diameter d and APL `. As we shall show
later, these characteristic length scales are important in determining the scaling behavior of end-to-end distance of
RWs. Even though the definition of ` is different from that of d, some authors do not discriminate ` from d. Thus,
in order to verify the compatibility of ` and d , we first measure d as a function of `. As shown in Fig. 1(a) we find
the linear relationship d ∝ ` for any γ . Thus the scaling behavior of d is the same with that of `, and we will use
d and ` without any distinction hereafter. As mentioned in Eq. (1), the scaling behavior of ` depends on γ of SFNs.
For γ = 3, the scaling behavior of ` becomes more complicated and it also depends on the existence of loops. In
the looped Barabási–Albert (BA) networks [18], ` ∼ ln N/(ln ln N ) [19]. In contrast ` ∼ ln N in the loopless BA
networks [19]. To find the best scaling relation of ` of the static SFNs with γ = 3 we directly measure ` using
the BFA method (see Fig. 1(b).) The data in Fig. 1(b) shows that ` of SFNs with γ = 3 seems to scale both as
` ∼ ln N/ ln ln N and ` ∼ ln N for small N . However, as N increases, ` deviates from the relation ` ∼ ln N/ ln ln N
(see inset of Fig. 2(b)). As pointed out in Ref. [7], γ = 3 is marginal. Thus, finding a correct scaling behavior for
γ = 3 is difficult through numerical simulations. In our analysis we estimate the standard errors of slopes of assumed
relations, ` ∼ ln N and ` ∼ ln N/ ln ln N . The estimated errors are 0.2 for ` ∼ ln N/ ln ln N and 0.06 when ` ∼ ln N .
The systematic deviation of ` from the analytic expectation (1) shows that ` of the static SFN model [17] does not
have ln ln N correction which is obtained by the tree-approximation [7]. This reflects the fact that other topological
properties such as degree–degree correlation should be considered in the derivation of `. In Fig. 1(c) we show that
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Fig. 1. (a) Plot of d against ` for N = 103
∼ 105. The solid lines represent the relation d ∝ `. (b) and (c): Dependence of ` on N for (b) γ = 3

and (c) γ = 4.3 and γ = 2.4 (inset of (c)). The solid lines represent the relations ` ∼ ln N for γ ≥ 3 and ` ∼ ln ln N for γ = 2.4 (inset of (c)).
The inset of (b) shows that ` for γ = 3 deviates from ` ∼ ln N/ ln ln N (solid line) when N increases.

Fig. 2. (a) Plot of 〈Ree〉 against t for γ = 4.3 when N = 107. The solid line corresponds to 〈Ree〉 ∼ t0.90. The inset displays the dependence
of the measured ν on 1/N . (b) Plot of 〈Ree(`, t → ∞)〉 against ln N (∼ `) for γ = 4.3 in log–log scale. The solid line corresponds to

〈Ree(`, t → ∞)〉 ∼ `
0.93

. The inset shows 〈Ree(`, t → ∞)〉 vs. ln ln N (∼ `) when γ = 2.4 in log–log scale. The solid line represents

〈Ree(`, t → ∞)〉 ∼ `
0.69

.

`(N ) ∼ ln N for γ = 4.3 and `(N ) ∼ ln ln N for γ = 2.4. We numerically confirm `(N ) ∼ ln N for γ ≥ 3 and
`(N ) ∼ ln ln N for 2 < γ . 2.5. In contrast we cannot rule out the possibility `(N ) ∼ ln N for 2.6 . γ < 3 from
the numerical data. However we expect from Eq. (1) [7] that the relation `(N ) ∼ ln ln N recovers for 2.6 . γ < 3 in
the limit N → ∞.

Now, let us discuss the average end-to-end distance 〈Ree〉 of RW on SFNs. At each time step t , we measure the
shortest distance, Ree(t), from the node where the random walker is to the node s. By averaging Ree(t) over different
initial positions and network realizations we get 〈Ree〉. Here the shortest distance between two nodes in networks
means the shortest path length or the minimal number of steps between them.

A typical dependence of 〈Ree〉 on t for finite SFNs is shown in Fig. 2(a). Fig. 2(a) shows the measured 〈Ree〉 on
SFNs with γ = 4.3 for N = 107. From the early-t behavior of 〈Ree〉 (or the data for t . 10 in Fig. 2(a)) the obtained
value of the exponent ν for the relation

〈Ree(t)〉 ∼ tν (3)

is ν ' 0.90(5). For other values of γ we obtain the same value, ν ' 0.90(5), when N = 107. The inset in Fig. 2(a)
displays the dependence of the measured ν on the network size N , which indicates that the values of ν approach to 1
as N increases. The 〈Ree(t)〉 does not increase indefinitely, but rapidly reaches a saturation value 〈Ree(`, t → ∞)〉

after a very short crossover time τee. Since τee is nearly equal to 10 or slightly larger than 10 even for the very large
network size (or N = 107), the expectation of ν = 1 from the data for less than one decade of t or so seems to
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Table 1
Estimates of the exponents α and z for SFNs with various γ ’s and random network (RN)

γ α z γ α z
2.15 0.42(1) 0.46(3) 3.0 0.60(1) 0.66(4)
2.40 0.69(2) 0.76(3) 3.5 0.81(1) 0.90(4)
2.50 0.84(1) 0.93(4) 4.3 0.93(2) 1.03(5)

5.7 0.98(4) 1.08(7)

RN 1.00(5) 1.11(8)

z is calculated from the relation α/ν. The used value of ν is ν = 0.90(5) which is obtained from the network with N = 107.

be physically unsound. However, since an earlier analytical study on the walks of a Cayley tree also suggests such
ν = 1 behavior [20], ν → 1 as N → ∞ is a physically more plausible one. We thus expect that ν → 1 as N → ∞

regardless of γ .
In Fig. 2(b) we display the 〈Ree(`, t → ∞)〉 for γ = 4.3 as a function of ` with ` ∼ ln N . As shown in Fig. 2(b),

〈Ree(`, t → ∞)〉 for γ = 4.3 satisfies the power-law:

〈Ree(`, t → ∞)〉 ∼ `
α
, (4)

with α = 0.93(2). 〈Ree(`, t → ∞)〉 for various γ is also found to satisfy the power law (4) very well. The obtained
α’s for various γ by assuming ` ∼ ln ln N for γ ≤ 2.5 and ` ∼ ln N for γ ≥ 3 are displayed in Table 1. For
2.6 . γ < 3, we find that 〈Ree〉 scales both as (ln N )α with α < 1 and (ln ln N )α with α > 1. For example, we
obtain α = 0.30(1) by use of the relation ` ∼ ln N for γ = 2.7. In contrast α = 1.49(1) is obtained using ` ∼ ln ln N
for γ = 2.7. By considering that the probability to find a random walker at a node of degree k is pv(k) ∼ k [11],
〈Ree(`, t → ∞)〉 < d and α should not be greater than 1. Thus, only 〈Ree(`, t → ∞)〉 ∼ (ln N )α leads the correct
physical expectation α ≤ 1 for 2.6 . γ < 3. This result is consistent with the direct numerical measurement of `.
Thus it is very difficult to numerically see 〈Ree〉 ' (ln ln N )α with α < 1 for 2.6 . γ < 3, since we have checked on
the network with the size up to N = 106. However, relying on the analytic arguments such as Ref. [7] we expect that
the scaling relation 〈Ree〉 ∼ (ln ln N )α with α < 1 would be recovered even for 2.6 . γ < 3 in the limit N → ∞.
Moreover, the crossover of the functional form of `(N ) causes the non-monotonic change of α.

From Eqs. (3) and (4), the dynamical scaling relation

〈Ree(`, t)〉 = `
α
(γ, N )g(t/`

z
) (5)

is expected. The scaling function g(x) then satisfies the relation

g(x) ∼

{
xν, x � 1
const., x � 1.

(6)

The dynamical scaling relation (5) also physically means that τee scales as τee ∼ `
z
. The dynamic exponent z is

evaluated from the measured α and ν through the relation z = α/ν and displayed in Table 1. To calculate z we use
ν = 0.90(5) measured on the SFN with N = 107. The values of α’s listed in Table 1 agree with the theoretical
expectation that α ≤ 1. Since ν → 1 as N → ∞, the asymptotic value of z is expected to be the same with α.
However, the finite-size effect causes ν < 1. As a result, the values of z listed in Table 1 slightly deviate from the
asymptotic values for all γ , but are consistent with the expected asymptotic values considering the error estimates.
Fig. 3 shows the scaling plot of 〈Ree〉 measured on SFNs with γ = 2.4, 3.0, 4.3 and on random networks (RNs) for
N = 103, 104, 105 and 106 using Eq. (5). As shown in Fig. 3, 〈Ree〉’s for various N collapse very well into a single
scaling curve with the exponents listed in Table 1 for each network topology.

Eqs. (3)–(5) provide another interesting way to find the scaling behavior of ` in SFN. The results imply that
the computing time needed for the measurement of scaling behavior of ` by RW method increases as O((ln N )z)

or O((ln ln N )z). Since the computing time to measure ` by BFA increases as O(N 2), the RW method is far more
efficient to find the scaling behavior of `.

For the sake of comparison we now explain the average number of distinct visited sites Nv(t) on SFNs with various
γ . Fig. 4 shows the scaling plot of Nv(t) for γ = 4.3 and 2.4 against t/N for N = 103, 104, 105 and 106. Nv(t) on
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Fig. 3. Scaling plot of 〈Ree〉 on SFNs with γ = 2.4 (a), 3.0 (b), 4.3 (c) and on RNs (d) for N = 103, 104, 105 and 106.

Fig. 4. This figure shows the scaling collapse for Nv on SFN with γ = 4.3 and 2.4 (inset).

SFN satisfies the scaling relation

Nv = N f (t/N ) (7)

with

f (x) ∼

{
x, x � 1
1, x � 1.

(8)

We have checked that the scaling relation (7) holds very well for SFNs with any γ .
The scaling relation (7) is slightly different from that of the regular lattice and the small-world network. On the

infinite D-dimensional lattices Nv depends on D. In the limit of t → ∞ [21], Nv ∼
√

t in D = 1, Nv ∼ t/ ln t in
D = 2 and Nv ∼ t for D > 2. On small-world networks, Almaas et al. [12] showed that the scaling behavior of
Nv crossovers from the Nv ∼

√
t to Nv ∼ t as t increases. This means that if the random walker does not reach the

shortcut, then the walker always sees the regular lattice structure (D = 1). On the other hand, if the walker meets the
shortcut, then the behavior of walker follows the mean-field result and finally Nv saturates to N due to the finite-size
of the network. However, each node in SFN can be connected to any other nodes and SFN can be regarded as an
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infinite-dimensional structure. Thus, Nv on SFN follows the mean-field behavior after the first few steps. From Eqs.
(7) and (8) the time t× at which Nv = N is given by t× ' N . This implies that the walker can sample a new region
at each time step by using shortcuts until it visits all nodes in the network. Thus the statistical properties such as the
average of certain quantity can be significantly enhanced even for small RW steps.

Moreover, since 〈Ree(t)〉 ∼ t1/2 and 〈Nv(t)〉 ∼ t for D ≥ 2, we can obtain a relation between the Nv and the
number of accessible nodes (or volume) Nac within the radius 〈Ree(t)〉 for D ≥ 2:

Nv

Nac
∼ t1−D/2. (9)

Thus, Nac/Nv diverges as t → ∞ which indicates the transient behavior of RWs [22]. The transient behavior becomes
much more striking in the limit D → ∞. From τee ∼ (ln N )z (or (ln ln N )z) and t× ' N , we know τee � t× on SFN.
This result means that the walker effectively moves to the end of SFN without visiting all nodes. As a result, we can
measure the scaling behavior of d(N ) in much shorter time than BFA algorithm (for example, see Figs. 1 and 3).

We now briefly summarize our results. We investigate the scaling properties of RWs on SFNs. We measure the
end-to-end distance Ree and the number of distinct visited sites Nv . From the scaling ansatz for 〈Ree〉 as Eq. (5), we
have measured the scaling exponents α, ν and z for 〈Ree〉 on various networks. From the scaling relation we find the
dependency of ` on γ and N . Based on the simple scaling arguments, we also discuss the theoretical reasons why
scaling behavior of d(N ) of networks can be measured far more efficiently by RW method than by BFA. Finally, Eq.
(4) can be easily recovered for γ > 3 by assuming rk,k′ ∝ N δ

(
kk′

)q (
ln(kk′)

)α with δ = (−2q + 2γ − 1)/(γ − 1).
Here rk,k′ is the average minimal distance between nodes of degree k and k′.
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