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a b s t r a c t

We study two weight-driven information spreading models for financial market. In these
models, we find that the activity threshold below which the ‘financial crash’ occurs can
be increased by uneven distribution of information weight, compared with Eguíluz and
Zimmermann model [V.M. Eguíluz, M.G. Zimmermann, Phys. Rev. Lett. 85 (2000) 5659].
We also find that below the threshold the normalized return distribution, P(Z; ∆t) satisfies
P(Z = 0; ∆t) ∼ exp(−∆t/b) whereas P(Z = 0; ∆t) ∼ ∆t−τ above the threshold. Here
∆t is the time intervalwhere the normalized return is defined, Z(t, ∆t) = Z(t+∆t)−Z(t).
By approximating the relative increase of P(Z; ∆t = 1) for large Z as Gaussian distribution
with non-zero mean, we show that the non-zero mean of the Gaussian distribution can
cause such exponentially decaying behavior of P(Z = 0; ∆t).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of financial systems using standard methods developed in physics has a long tradition [1] and has recently
been one of the active research areas in physics [2]. Much of the research interest of physicists has been mainly focused
on the analysis of stock markets [2,3] and foreign exchange markets [4] due to the large amount of accessible data. Among
those empirical studies, themost remarkable finding is thatmany differentmarkets share universal properties. For example,
the fat-tailed distribution of returns [2,3,5], long-term volatility correlation [2,6,7] and herding behavior [8,9] have been
observed inmany differentmarkets [3–5,10–14]. The existence of such universal nature inmany differentmarkets is striking
and suggests that those markets should be governed by the similar underlying mechanisms. In order to investigate the
universal phenomena observed in many real markets, many microscopic models such as percolation model [8] and Ising-
like spin models [15] have been developed.

Among those studies, Eguíluz and Zimmermann (EZ) recently proposed an interesting model to investigate the
relationship between the transmission of information and herding behavior [9]. In EZ model, groups of agents are
dynamically formed by random dispersion of information. The agents in the same groupmake the same decision for trading
activity which cause the herding behavior. EZ showed that when the information dispersion is slower than the trading
activity the return distribution follows a power-law. On the other hand, if the information dispersion is much faster than
the trading activity then the relative increase in the distribution of extremely high return is observed. This relative increase
of return distribution is known to be related to the financial crashes [9,13,14]. As shall be seen in Section 2we indeed find that
the relative increase in the return distribution is observed during the 9.11 crash. This implies that the information dispersion
rate plays a very important role in the market dynamics.

Although the EZ model succeeded to explain many interesting features of the financial market, there are still many
important factors which are not reflected in the model. In particular, the ‘‘value’’ or ‘‘weight ’’ of information that each agent
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Fig. 1. (a) Change of S&P 500 index during the 9.11 crash period. The circle denotes September 11. (b) R(t, ∆t = 5 min) of S&P 500 index for the same
period.

has should be different from agent to agent in real markets. A certain piece of information is more important than the
others. Moreover, the value of information can be changed with time by combining with other piece of information. The
cooperation between agents or individuals should be affected by the value of the information to maximize their profit. In
order to investigate the effects of different weights of information, we assume that the profit is proportional to the weight
of information for simplicity. Based on this assumption, we introduce two weight-driven information spreading models.
One has time independent weight of information. The other one has dynamically changing weight as a result of synergetic
cooperation among the agents. From the numerical simulations, we find that the financial crash can occur with higher
activity rate compared to EZ model. We also suggest a novel criterion to determine activity threshold below which the
financial crash occurs by analyzing the return distribution.

This paper is organized as follows. In Section 2we provide empirical measurement of return distribution during financial
crash. In Section 3 two information spreading models are introduced. And the simulation results are given Section 4.
Summary and discussions are presented in the last section.

2. S&P500 index

The financial crashes in stock markets are usually defined by the striking drops of index or price of all stocks [16]. One
of recent market crashes has been reported in September 11, 2001 which is known as 9.11 crash. Fig. 1(a) shows the 5-min
change of Standards and Poor’s (S&P) 500 index fromAugust 1 to October 30 in 2001. The circle indicates the change of index
on September 11. The data shows the index starts to decrease from the end of August and reaches the minimum around
September 20. Then the rally period begins and the index becomes stable after October 10. For a time series p(t) of price
or index value, the logarithmic return (or simply return) over integer time interval ∆t , R(t, ∆t), and the normalized return
Z(t, ∆t) are defined as

R(t, ∆t) = ln[p(t)] − ln[p(t − ∆t)], 0 (1)

and

Z(t, ∆t) =
R(t, ∆t) − 〈R(t, ∆t)〉

σ
, (2)

respectively. Here σ is the volatility, σ =
(〈
R(t, ∆t)2

〉
− 〈R(t, ∆t)〉2

)1/2
and 〈· · ·〉 denotes the average over time. The

logarithmic return in the same period, R(t, ∆t = 5min), is also displayed in Fig. 1(b). As shown in the data, the amplitude of
R(t, ∆t = 5 min) suddenly increases from the end of August (Fig. 1(b)). Although the financial crash is sometimes observed
when the return distribution follows the Gaussian distribution [14], several studies have pointed out the possibility that the
return distribution becomes asymmetric when the crash occurs [13] and deviates from the Lévy distribution [13,14]. From
the data in Fig. 1 we find a very interesting result. Fig. 2 shows P(|Z |) measured from the data in Fig. 1. The obtained P(|Z |)
has two distinctive regimes. When |Z | is small (|Z | < 0.05), P(|Z |)monotonically decreases. If we approximate the data to a
power-law distribution in this regime, then we obtain P(|Z |) ∼ |Z |

−1.7 (dashed line in Fig. 2). In the large |Z | regime P(|Z |)
shows an explicit bumpwhich can be approximated by the Gaussian distribution with a non-zero mean (solid line in Fig. 2).
Thus, we expect that P(|Z |) during the 9.11 crash can be regarded as a combination ofmonotonically decreasing power-law-
like distribution and Gaussian distribution which has non-zero mean. (The detailed analysis for this kind of financial crash
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Fig. 2. (color on line) Plot of P(|Z |) of S&P 500 index from August to September 2001. The dashed line represents P(|Z |) ∼ |Z |
−1.7 and the sold line denotes

Gaussian distribution with a non-zero mean.

shall be given in Section 4.2.) Our measurement of P(|Z |) confirms the expectation suggested by EZ [9] for the first time.
This provides an evidence that the information dispersion rate becomes very important to understand many properties of
financial markets during the financial crash.

3. Models

In our models, it is assumed that the number of agents who want to cooperate with a certain agent i (‘‘carrying capacity’’
of agent i) is proportional to the weight of the information of the agent i, wi. Quantifying the value of information or finding
its distribution is not trivial. In EZ model, each agent has the same weight of information [9]. Therefore, the information
spreading of EZ model is described by a Gaussian process in which the fluctuation becomes irrelevant. However, there is
no reason that the weight of all information should be the same. To study the effect of different weights on the market
dynamics, we assume that the resulting dynamical process is different from the Gaussian process. One of the simplest non-
trivial distributions which cause a non-Gaussian process is a power-law distribution. The power-law distribution can be
observed in various systems. For example, the popularity of a file in peer-to-peer network, which can be regarded as a value
of the file, is known to follow a power-law [17–20]. Like the popularity distribution of file, we assign a weight to each node
which is drawn from the power-law distribution

P(w) ∼ w−δ. (3)
Here δ determines the heterogeneity in the weight of information.

3.1. Weight-driven information spreading (WDIS) model

We consider a system of N agents (or nodes). Each agent i can have one of the three states φi ∈ {−1, 0, 1} and weight
of information wi drawn from the distribution (3). Each state corresponds to an inactive (φ = 0), selling (φ = −1), or
buying (φ = 1) state. If φ = ±1 then the agent is in active state. Initially, all agents are inactive and isolated (no links or
cooperation among them). The network of the cooperation evolves as follows: At each time step t (I) an agent i is randomly
selected. (II) Activity: With probability a the agent i randomly chooses one state between φi(t) = 1 and φi(t) = −1, and
instantly all agents in the cluster to which i belongs choose the same state with agent i simultaneously. The aggregated state
of the system si(t) =

∑N
j=1 φj(t) is calculated. Thus, |si(t)| represents the active cluster size or the size of order at time t .

Then disconnect all the links between active agents. This process defines the economic activity or simply activity. (III) Cluster
formation: With the probability 1− a, the state of agent i remains inactive and new [wi − ki] links between agent i and a set
of randomly selected agents {j} are established if ki ≤ wi and kj ≤ wj. Here [x] denotes the maximum integer which is not
greater than x, and ki represents the degree or number of nodes already linked to the agent i with undirected connections.
This procedure implies that another link is added if the carrying capacity of both agents involved is not exhausted.

3.2. Weight-driven information spreading with synergetic cooperation (WDISSC) model

The initial condition and the procedure (I)–(III) of the WDISSC model are the same with those of WDIS model. But when
the two nodes are connected in the process (III) the value of information is increased synergetically, i.e. wi → wi + 1 and
wj → wj + 1 [21]. After the activity (II), the weights are restored to the initial weight which is originally drawn from the
distribution (3).
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4. Simulation results

4.1. Normalized return distribution

Before discussing our simulation results, let us define the price and return. As one of the simplest assumptions, the
evolution of the price p(t) at t is proportional to both the size s(t) of the order and p(t) [22]. The price might increase
(decrease) when the net activity is buying (selling). Thus, we assume that the price change is given by

dp(t)
dt

=
s(t)
λ

p(t), (4)

where λ is a parameter which controls the size of price. In the numerical simulations we use λ = 5 × 104 as in Ref. [9]. The
value of λ does not affect the analysis of the return distribution. In our model we consider only a discrete time series of p(t),
(t = 0, 1, 2, . . .). In the discrete time series p(t) evolves as p(t + 1) = p(t) exp(s(t)/λ) from Eq. (4). Due to the symmetry
of the model, 〈R(t, ∆t)〉 = 0 for all ∆t (∆t = 1, 2, 3, . . .). In Ref. [9], the authors mainly focused on the properties of
P(Z(∆t = 1)) to understand the relationship between the information dispersion and the occurrence of financial crash. In
the following analysis, we will show that the scaling properties of P(Z = 0; ∆t) can provide a novel criterion to determine
the threshold a∗ below which the financial crash occurs.

From the measurements of stock indices it has been shown that the distribution of R or equivalently the distribution of
Z satisfies a leptokurtic distribution with power-law or fat-tailed distribution for small ∆t [2,5]. The obtained distribution
has been approximated by Lévy stable distribution for small ∆t and 0 < α ≤ 2:

P(Z) ≡
1
π

∫
∞

0
exp (−γ |q|α) cos(qZ)dq. (5)

Here α and γ are the index and scaling factor, respectively. The distribution (5) is known to be stable when 0 < α ≤ 2 [12].
The distribution (5) approaches the power-law [2]

P(|Z |) ∼ |Z |
−(1+α), (6)

when |Z | � 1 and α < 2. However, most empirical studies on the stock market indices have shown that the P(Z) with a
finite secondmoment deviates from the Lévy stable distribution for large Z . As an alternative, the truncated Lévy distribution
has been suggested to have finite variance [2].

Now let us discuss the numerical simulation results forWDIS andWDISSCmodels. In the simulationswe use P(w) ∼ w−δ

with δ = 2.5 because the variance of P(w) diverges for δ < 3.We rescale the time to place an activity (II) at every time on the
average: t → at [9]. In Fig. 3 we display the obtained P(|Z(∆t = 1)|) and P(Z(∆t = 1)) of both WDIS and WDISSC models
when a = 0.9 which corresponds to the large activity regime. From the best fit of Eq. (6) to the data of P(|Z(∆t = 1)|) we
obtain α ' 1.5 for both models (see Fig. 3(a) and (b)). In Fig. 3(c) and (d), we compare the obtained P(Z(∆t = 1))’s of our
models with Eq. (5). With the obtained α ' 1.5 we find that the simulation results agrees well with Eq. (5) when γ = 0.05
forWDISmodel and γ = 0.005 forWDISSCmodel. Note that, in this high activity limit (a → 1), there is no sufficient time to
spread information or to form a large cluster. Thus, if we choose an agent for an activity at random, the rest of agents in the
active cluster are mostly restricted to the directly connected neighbors of the selected agent. Since the degree of the chosen
agent is proportional to the assigned weight, the distribution of the number of active agents or active cluster size is simply
proportional to the given weight distribution. From Eqs. (4) and (1), the active cluster size |s(t)| satisfies |s(t)| = λ |R(t, ∆)|
when ∆t = 1. Therefore, the (normalized) return distribution is proportional to Eq. (3) and 1 + α = δ. We obtained the
similar results for othermoderated values of δ. In the limit δ → ∞weexpect that P(Z(∆t = 1)) approaches the exponential
distribution. The power-law tails of data in Fig. 3 also indicate that there can be large clusters in which the majority of the
agents sharing the same information and produce the large return. This behavior is usually known as ‘‘herding behavior’’
[8,9,15].

As a decreases, we find a threshold a∗ below which a bump in P(|Z(∆t = 1)|) for large |Z(∆t = 1)| is observed in
both WDIS and WDISSC models (see Fig. 4(a) and (b)). This relative increase in P(|Z(∆t = 1)|) for large |Z(∆t = 1)| is
expected to be related to the financial crash of a market [9] (see Section 2). The similar behavior was reported in EZ model.
a∗ of EZ model was reported as a∗ < 0.10 in Ref. [9]. To find more precise value of a∗ we measure the successive slope
1+αs ≡ −δ[log P(|Z(∆t = 1)|)]/δ[log |Z(∆t = 1)|]. When P(|Z(∆t = 1)|) follows Eq. (6), 1+αs should be the same with
1 + α. On the other hand, if there is a bump in P(|Z(∆t = 1)|) then 1 + αs becomes less than 1 + α, and if P(|Z(∆t = 1)|)
decays exponentially then there is an abrupt increase of 1 + αs. This can be clearly seen from the data in the insets of Fig. 4.
For a ≈ a∗, 1+αs coincides with 1+α which is obtained from the best fit of P(|Z(∆t = 1)|) to Eq. (6) and abruptly increases
(open circles in the insets). However, if a decreases further then 1 + αs becomes smaller than 1 + α for moderate value of
|Z(∆t = 1)|which indicates the occurrence of the bump in P(|Z(∆t = 1)|) (see the open squares in the insets). The detailed
measurements of 1+ αs reveal that a∗

≈ 0.06 for EZ model (which is not shown). From the data in Fig. 4(a) and (b) we find
that a∗

≈ 0.11 and a∗
≈ 0.4 for WDIS and WDISSC model, respectively. The values of a∗ of our models are larger than that

of EZmodel. This implies that the financial crash can occur not only in the low activity limit but also in themoderate activity
regime compared to EZ model, for example a . 0.4 in WDISSC model. The obtained scaling exponents around a ≈ a∗ are
α ' 0.6 ± 0.1 for WDIS model and α ' 0.7 ± 0.1 for WDISSC model (see the dashed lines in Fig. 4(a) and (b)). In EZ model
α ' 0.5 for a ' a∗ was obtained.
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Fig. 3. (color online) Plots of P(|Z |) against |Z | for (a)WDISmodel and (b)WDISSCmodelwith a = 0.9 and∆t = 1. The solid lines represent the power-law
P(|Z |) ∼ |Z |

−(1+α) with α ' 1.5 for both models. The value of α is obtained from the best fit of Eq. (6) to the data. Plots of P(Z) for (c) WDIS model and
(d) WDISSC model with a = 0.9 and ∆t = 1. (The solid lines correspond to the Lévy distribution (Eq. (5)) with α = 1.5, (b) γ = 0.05 and (c) γ = 0.001.).

4.2. Scaling property of return distribution

In order to investigate the crossover observed in Figs. 3 and 4 in more details, we consider the scaling arguments on Lévy
stable distribution suggested by Mantegna and Stanley [2,5]. They showed that the self-similarity of Eq. (5) is related to the
‘probability of return to origin’ which corresponds to P(Z = 0; ∆t) and scales as

P(Z = 0; ∆t) ∼
1

(∆t)1/α
∼ ∆t−τ . (7)

From the empirical studies on S&P 500 index, Mantegna and Stanley showed that the return distribution of the stock indices
satisfy Eqs. (6) and (7) with α ' 1.40 (or τ ' 0.7) up to a certain value of ∆t . As increasing ∆t further, the returns are
not correlated any more and the return distribution becomes Gaussian. Thus, τ becomes 0.5 since α = 2 for the Gaussian
distribution. This crossover from the Lévy distribution to the Gaussian distribution is well described by the truncated Lévy
flight (TLF) distribution [2]. The TLF is not a stable distribution. However, TLF is quite similar to the Lévy stable distribution
for small∆t and converges to the Gaussian distributionwhen∆t → ∞. We now apply this scaling argument to ourmodels.
As shown in Fig. 5 (a) and (b) when a > a∗ we find that τ ' 1.7 for WDIS model and τ ' 1.4 for WDISSC model when
∆t < 200. The estimated α’s from the relation α = 1/τ , Eq. (7), agree well with those obtained from the data in Fig. 4. As
we increase ∆t further (∆t > 200), the correlation disappears and P(Z; ∆t) becomes Gaussian. Thus, we obtain τ = 0.5
(see the dashed lines in Fig. 5(a) and (b)) as expected. These results consistent with the empirical results. However, if a < a∗

then we find that P(Z = 0; ∆t) decays exponentially (Fig. 5(c) and (d)).
The exponentially decaying P(Z = 0; ∆t) for a < a∗ can be understood from the following analysis. If we approximate

the bump for large |Z | to a Gaussian distribution with non-zero mean ±µ and variance D2, then P(Z; ∆t) can be expressed
as (see Section 2)

P(Z; ∆t) ∼ PL(Z; ∆t)
[
P+

G (Z(∆t))Θ(Z(∆t)) + P−

G (Z(∆t))(1 − Θ(Z(∆t)))
]
, (8)
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Fig. 4. (color online) Plot of P(|Z |) against |Z | in log-log scale for small values of a when ∆t = 1. (a) WDIS model and (b) WDISSC model. As a decreases
the relative increase of P(|Z |) for large |Z | is observed in both models. Dashed lines denotes the relation (a) P(|Z |) ∼ |Z |

−1.6 for WDIS model and
(b) P(|Z |) ∼ |Z |

−1.7 for WDISSC model. Insets of (a) and (b) display the successive slope of P(|Z |). Horizontal lines indicate the relations (a) (1 + α) = 1.6
and (b) (1 + α) = 1.7.

Fig. 5. Plot of P(Z = 0; ∆t) against∆t for (a)WDISmodel and (b)WDISSmodel. The slope of the solid lines satisfy the relation (a) τ ≈ 1.7 and (b) τ ≈ 1.4.
The dashed lines denote 1/α ≈ 0.5 for both (a) and (b) when a > a∗ . (c) and (d) display P(Z = 0; ∆t) when a < a∗ for WDIS model (c) and WDISS model
(d). The solid lines in (c) and (d) represent the exponentially decaying P(Z = 0; ∆t).

for a < a∗. Here PL(Z(∆t)) denotes Lévy distribution given by Eq. (5) and P±

G (Z(∆t)) represents the Gaussian distribution
with mean ±µ. Θ(Z) is the Heaviside theta function satisfying Θ(Z < 0) = 0 and Θ(Z ≥ 0) = 1. By the convolution
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Fig. 6. Plot of the averaged distribution of cluster size s for (a) WDIS model and (b) WDISS model. The solid lines denote the relation P(s) ∼ s−β . From the
best fit, we obtain β ' 2.7 for a . a∗ (solid lines) and β ' 3.5 when a = 0.9 (dashed lines).

theorem, we obtain,

P(Z = 0; ∆t) ∼

∫
∞

0
exp

[
−∆t

(
γ qα

+
D2

2
q2 − iµq

)]
dq. (9)

When α � 2 and γ � D2/2, Eq. (9) can be approximated by

P(Z = 0; ∆t) ∼ e−
µ2

2D2
∆t

. (10)

Thus, Eq. (10) provides an evidence that the product of Lévy distribution and Gaussian-like distributionwith non-zeromean
can cause exponentially decaying P(Z = 0; ∆t). This result indicates that the emergence of bump causes a crossover from
Eq. (7) to Eq. (10). Thus, Eqs. (7) and (10) can be used as another criterion to find the threshold a∗.

4.3. Cluster size distribution

Since the probability to choose a cluster of size s is proportional to s, the P(|Z |) is known to be directly related to the cluster
size distribution, P(s). More specifically, if P(s) follows the power-law, P(s) ∼ s−β , then P(|Z |) ∼ |Z |

−(1+α)
∼ s−(β−1) [9].

Thus, the exponents α and β satisfy the relation

β = α + 2. (11)

In Fig. 6 we show the measured P(s) for both models. From the data we find that P(s) satisfies power-law P(s) ∼ s−β as
assumed in Eq. (11). From the best fit to the data we obtain β ' 2.7 when a . a∗ and β ' 3.5 for a = 0.9 (> a∗). The
values of α’s and β ’s obtained from Figs. 4 and 6 satisfy the relation (11).

5. Summary and discussions

We study the effects of non-trivially distributed weight on the herding behavior and the outbreak of financial crash
through two agent based weight-driven information spreading models. From the empirical analysis on S&P 500 index, we
observe an explicit bump in P(|Z |) for large |Z | during the crash period. Through the numerical simulations, we show that
the uneven distribution of the weight of information in our models can increase the a∗, below which a financial crash is
expected, compared to the EZ model. The increment a∗ becomes more significant when the synergetic cooperation occurs.
Moreover, in EZ model P(Z(∆t = 1)) decays exponentially for a > a∗. Such exponentially decaying P(Z) is not observed
in real markets, but in our models P(Z(∆t = 1)) follows the power-law or Lévy distribution even in the large activity
regime. Therefore, we expect that our models are more appropriate to describe realistic situations in financial markets than
EZ model.

We also find that the scaling behavior of P(Z = 0; ∆t) satisfies the power-lawwhen the market does not crash (a > a∗).
However, in the financial crash regime (a < a∗), P(Z = 0; ∆t) exponentially decays. By assuming the relative increase of
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normalized return for large Z as the Gaussian distribution with non-zero mean, we analytically show that P(Z = 0; ∆t)
decays exponentially. This can provide a novel criterion to find the threshold a∗ belowwhich the financial crash is expected.
The same scaling behavior is also observed in EZ model.
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