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Abstract

We show how effectively the diffusive capture processes (DCP) on complex networks can be applied to information

search in the networks. Numerical simulations show that our method generates only 2% of traffic compared with the most

popular flooding-based query-packet-forwarding (FB) algorithm. We find that the average searching time, hTi, of the our

model is more scalable than another well known n-random walker model and comparable to the FB algorithm both on real

Gnutella network and scale-free networks with g ¼ 2:4. We also discuss the possible relationship between hTi and hk2
i, the

second moment of the degree distribution of the networks.

r 2007 Elsevier B.V. All rights reserved.

PACS: 89.20.Ff; 89.20.Hh; 89.75.Hc; 05.40.Fb; 89.75.Fb; 05.90.+m

Keywords: Complex networks; Internet; Random walks
The study on the complex networks has been attracted many researchers in diverse fields [1,2]. Due to the
inherent complexity in their structures, the dynamical properties of many physical systems on the networks
have shown rich behaviors which depend on the structure of the underlying networks and are far from the
mean-field expectations [3]. The diffusive capture process (DCP) on complex network is one such example
[4,5]. The DCP or the moving trap model has been studied in many physics literatures [6] on chemical kinetics,
wetting, melting, etc. This process can be mapped into coupled random walks (RWs), in which n predator
(lions or moving trap) stalk a prey random walker (a lamb or a moving particle). On a d-dimensional regular
lattice, the survival probability SðtÞ of the lamb is given by [7–9]

SðtÞ�

t�b for do2;

ðln tÞ�n for d ¼ 2;

finite for d42;

8><
>: (1)

where the exponent b varies as n and the ratio of diffusion constant of walks. Like many physical systems on
complex networks, we have found that the SðtÞ of the DCP on complex networks also deviates from the mean-
field expectation depending on the degree distribution of the underlying networks. This anomalous behavior
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has been found to come from the existence of dominant hubs in complex networks [4,5] and can be applied to
information search in complex networks.

The searching information in complex networks, such as peer-to-peer (P2P) networks and the world-wide-
web (www), using random walkers [10,11] is an interesting and important application in diverse areas
including physics, computer science, and neuroscience [11–13]. The efficiency of the information search can be
defined by two factors: (1) amount of traffic at time t defined by the total number of packets existing on the
network at t and (2) searching time which corresponds to the average life time of a lamb in the DCP. In
general, these two factors are competing to each other, i.e., reducing the traffic congestion causes long waiting
time to find a given information. Therefore, it is very important and difficult to design a less traffic congesting
model with short searching time. In this paper, we consider the pure P2P networks as an example of
information search by taking notice of the fact that the most of traffic generated by P2P applications consists
of the query packets to find out the node which has the requested file out of the P2P jungle [1]. A pure P2P
network does not have the notion of clients or servers, but only equal peer nodes that simultaneously function
as both clients and servers to the other nodes on the network. Thus, there is no central server managing the
network and no central router. By applying the anomalous behavior of the DCP on complex networks, we
drastically reduce the traffic congestion. We will also show that our model can provide implementable
searching time. We expect that our results can be easily generalized to apply many other information search
problems and communication networks, such as neural networks.

The performance of searching algorithm is crucially affected by the underlying topology [14]. Many studies
on the large-scale topology of P2P networks have uncovered that the probability distribution of a node with
degree k follows the power law,

PðkÞ�k�g, (2)

with go3 [1,11,14,15], or highly skewed fat-tailed distributions [16]. The network satisfying Eq. (2) is called a
scale-free (SF) network [2]. In these networks with go3, several nodes have most of degrees or connections.
These nodes are called hubs and many important properties of complex networks are dominated by them [1,2].
However, most of the popular algorithms used in many P2P networks do not take advantage of the underlying
structure. In those algorithms, a query packet is generated by a node and forwarded to the nearest neighbors
until it finds the requested information during a query event. For example, the flooding-based query-packet-
forwarding (FB) algorithm [14], which is used in BitTorrent [17,18], spreads the query packets to all nodes
within a pre-assigned diameter. Thus, this algorithm causes significant traffic congestion. The n-random
walker (n-RW) model, which is used in LMS (Edutella) [17,19], is another well studied model for searching
information [14,11]. n-RW model can cause long waiting time because of the dynamical properties of RWs on
complex networks [20]. Gnutella and Kazaa use both algorithms [21,22]. Other P2P applications are
structured and use global information such as distributed hash table (DHT) [17,23]. Thus, the traffic generated
by those P2P applications using global information can be ignorably small compared with the pure P2P
applications. However, pure P2P protocols mentioned above and their clones are still used very widely and
listed in the most popular P2P protocols (for example see Ref. [24]). Therefore, we focus on the searching
algorithm of pure P2P networks without global information in this paper. Inspired by our recent discoveries in
the DCP [4,5], we introduce a new model for information search in which not only the query packets but also
the information packets take RWs on the network. We will show that our new model has two main benefits
compared to the other algorithms: (1) the amount of traffic is always constant and much less than FB
algorithm. (2) Much less searching time than that for n-RWmodel. Using these two benefits, we expect that
our algorithm can provide more optimized algorithm compared to FB or n-RW for pure P2P networks.

We now explain our model based on the anomalous behavior of DCP on the complex networks in detail. In
the model, each node sends out an information packet whose main part, for example, consists of names of files
stored in it, without regard to the existence of query events. Each of these packets takes RWs along the
network connections. Thus, if there are N nodes in the network then N information packets take RWs.
Independently, a randomly chosen node sends out one query packet to find a specific file. The query packet
also takes RWs. The special feature in our model is thus in the fact that not only the querying packet moves
but the information of all files moves on the network. If the query packet meets an information packet which
has the requested file name in its list, then the RW of the query packet is terminated but the information
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packet continues RWs for the next query. Thus, our model for information search can be mapped into the
DCP, i.e., the query packet and the N information packets correspond to the one random walking lamb and
N random walking lions, respectively. Therefore, we will call our model the N lions and one lamb (NLL)
model.

We assume nf available files on the given network. For the distribution of files and frequency of queries, we
use two kinds of file distribution and frequency of queries. In the first kind, we assume that each node of the
network has one randomly chosen file among nf , and sends out an information packet with the name of the file
stored in it, its IP address, etc. And a randomly chosen node sends out a query packet to find one randomly
chosen item among nf files. Thus the popularity of files and frequency of queries are uniform. In the second
kind which is invoked by more realistic P2P network [25], the popularity of files or the probability to find the
rth most popular file in the network is assumed to be proportional to 1=r (Zipf’s law) [26–28]. The frequency of
queries to find the rth most popular file is also assumed to be proportional to 1=r which is consistent with some
empirical observations [26–28]. We call the first kind uniform distribution and the second kind Zipf-
distribution from now on. The empirically obtained Zipf-distribution also implies that it is more probable to
increase the number of more popular files rather than new or rare files when a new user joins the P2P network.
Thus, we assume that nf is fixed for each given network for simplicity.

In the simulation we use two kinds of networks. One is the theoretical SF network with g ¼ 2:4 to mimic the
virtual P2P networks. The SF networks are generated by the method suggested by Goh et al. [29]. To compare
the scalability of each model or algorithm, we control the number N of nodes in the networks as N ¼ 1032106.
The other kind is the snapshot of a real Gnutella topology obtained from Ref. [16], which has 1; 074; 843
(� 106) nodes. For comparison with the results on the theoretical SF networks, we extract the sub-networks of
Gnutella from the huge snapshot without changing the topological properties. Constructing sub-network with
No106 from the given snapshot of the Gnutella network without changing the topological properties is not
trivial one [30–32]. To extract Gnutella sub-networks having N ¼ 1032105 nodes from the snapshot, we use a
RW; place a particle at a randomly chosen node and let the particle take RWs until it visits N different nodes.
Then construct sub-networks with these N visited nodes and the links which connect any pair of nodes among
the N visited nodes in the original network. We have verified that the resulting sub-networks and original
Gnutella network have almost the same degree distribution, degree–degree correlations and hierarchical
structures [32]. All quantities measured in the simulations are averaged over 10 network realizations and 100
different histories for each network realization.

In Fig. 1(a), we compare the traffic f ðtÞ generated by FB algorithms to that by NLL model on the SF
networks with N ¼ 103 nodes. At each time t, all packets whose pre-assigned time-to-live (TTL) counter is
larger than 0 are forwarded to the nearest neighbors. The TTL of each packet decreases by one when the
packet is forwarded to its nearest neighbors, and if TTL ¼ 0 then the query event is forced to end [1]. The
uniform distribution for files and frequency of queries is used. We assign nf ¼ 5 and TTL¼ 6 for FB
algorithm. The different values of the nf and TTL give us the similar results. In order to prevent the overflow
caused by a large number of packets in FB algorithm, we assume that a new query event can occur when one
of the query packets succeed to find the requested file. In this case, the other query packets, which fail to find
the requested file, are forwarded until their TTLs become 0. If all the query packets fail to find the requested
file, then a new query event can occur only when the TTLs of the previous packets are expired. The traffic
generated by FB algorithm during each query event is known to increase exponentially as

f ðt ¼ TTLÞ � hki
hk2
i � hki

hki

� �TTL�1

, (3)

where hki and hk2
i are the first and second moments of network degree distribution, respectively [1]. However,

the traffic of NLL model is always N þ 1ð¼ 1001Þ for successive query events. The simulation result shows
that FB algorithm generates around 50 times more traffic than NLL model on the average. If there are
q simultaneous query events, then the average traffic for FB algorithm increases simply by q times of the
average traffic shown in Fig. 1(a), but it becomes simply qþN for NLL model. The successive single query
events of n-RW model produce the smallest traffic among the algorithms considered in this paper. Since the
traffic of n-RW model is qn for q simultaneous query events, if q ¼ N, i.e., every node in the network sends out
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Fig. 1. (a) Plot of traffic f ðtÞ against t. The average traffic of NLL model is calculated from simple theoretical arguments. (b) Time

averaged traffic hf ðN; tÞit generated by FB and by NLL for various network sizes N ¼ 1022103. (c) The time evolution of f ðtÞ obtained

from a single run of simulation of FB algorithm. One of the local maxima of traffic generated by FB algorithm is marked by the arrow. (d)

The traffic of FB algorithm measured at each node f ðiÞ when f ðtÞ has the local maximum.
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a query packet simultaneously, then the traffic generated by n-RW model can exceed the traffic of NLL model
depending on the value of n. We also consider the dependence of f ðtÞ on the network size N, f ðN; tÞ. Fig. 1(b)
shows the time averaged traffic generated by FB algorithms, hf FBðN; tÞit, and by NLL model, hf NLLðN; tÞit, on
the SF networks with N ¼ 1022103. As N increases, hf FBðN; tÞit � hf NLLðN; tÞit considerably increases.
Fig. 1(c) displays the time evolution of the traffic obtained from a single run of simulation for FB algorithm. It
implies a practical importance. Due to the large fluctuations, for example, around at t � 3:0� 104 (marked by
the arrow) the traffic on the network can have local maxima exceeding 2� 106, which is 2000 times larger than
the traffic generated by NLL model. At the moment of occurring such large amount of traffic, FB algorithm
can causes severe traffic congestion over the network. However, NLL model always guarantees a constant
level of traffic, which is much less than that of FB algorithm and comparable to that of n-RW model.

Since the probability that a RW visits a node of degree k is given by pvðkÞ ¼ k=
PN

i¼1 ki [7,20], the average

traffic of NLL model at the node having k links can be estimated by hf ðkÞi ¼ Nðk=
PN

i¼1 kiÞ. Therefore, the hub

can have considerable amount of lion-traffic in the NLL model. In order to find the bottleneck in FB
algorithm, we measure the traffic of each node f ðiÞ when f ðtÞ has the local maximum for FB algorithm
(Fig. 1(d)). By definition of the static model [29], the smaller node index i has the larger k. From the data, we
find that the traffic of the largest hub (i ¼ 1) reaches around 4� 104 which is much larger than the average
traffic of NLL model at the largest hub hf ðkmaxÞi or the possible maximum traffic of NLL model (f max ¼ 1001
for N ¼ 1000). The maximum traffic of a link at time t can be estimated by mean-field type arguments as
f ðkmax; tÞ þ hf ðtÞi for FB algorithm which is much larger than that for n-RW and NLL model,
f ðkmax; tÞ=kmax þ hf ðtÞi=hki. Here, f ðkmax; tÞ represents the traffic on the largest hub at t.

In Fig. 2 we show the average searching time, hTi, for each algorithm. The searching time T is defined by the
time taken to find the requested information, and thus, it corresponds to the life time of a lamb in DCP. In the
simulations we use infinite TTLs. Since the searching time of n-RW model depends on the value of n, we
need a criterion for n. Here we use the condition f n�RW ðtÞ ¼ f NLLðtÞ when q ¼ N, so we fix n ¼ 2 in the
following simulations. In Fig. 2, we display the average searching time when nf ¼ 500. From the data we
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Fig. 2. Log–log plot of the average time hTi taken to find the requested information with a fixed value of nf (¼ 500) on SF networks with

g ¼ 2:4 (a) and real Gnutella networks (b). hTi decreases as increasing N both for 2-RW and NLL models, while hTi for FB algorithm

remains almost constant on SF networks (a) and decreases on real Gnutella networks. Open symbols: both the frequency of queries and

popularity of files follow the uniform distribution. Crossed symbols: both the frequency of queries and popularity of files follow the Zipf-

distribution. (c) Plot of the Dij log10hTi against N. The subscripts i and j represent each model (2-RW, NLL, and FB). Squares correspond

to the results for i ¼ 2-RW and j ¼ NLL. Circles denote the results for i ¼ NLL and j ¼ FB. The dashed line represents Dij log10hTi ¼ 1.

Dij log10hTio1 implies that the difference in the order of magnitude of hTi between the models i and j is less than order 1.
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cannot find any significant difference between uniform distribution and Zipf distribution of files and queries.
The average searching time of NLL model on SF networks is, at least, 10 times faster than n-RW model on SF
networks. For example, hTi2�RW=hTiNLL ¼ 365:417=12:84 � 28 on SF networks for N ¼ 106. However,
hTiNLL=hTiFB ¼ 12:84=2:9 � 4:4 on the same size of SF networks (see Fig. 2(a)). Therefore, the average
searching times satisfy the inequality,

hTiFBohTiNLLohTi2�RW (4)

for all Np106. We also investigate the performance of each models when searching for rare files by assuming
that nf ¼ N. From the numerical simulations we obtain hTiFB ’ 4:7, hTiNLL ’ 3938, and hTi2�RW ’

1:67� 106 for N ¼ 106. These results show that the performance of NLL model in this extreme case still
satisfies Eq. (4).

Note that hTi of NLL model decreases much faster than that of n-RW model as increasing N and
approaches to hTiFB, i.e., the difference between NLL and 2-RW models, hTi2�RW � hTiNLL, increases while
hTiNLL � hTiFB decreases as increasing N (see Fig. 2(a)). We find the same behavior of hTi’s on the real
Gnutella (sub-) networks (see Fig. 2(b)). This can be understood from the dynamical properties of RWs on
complex networks. Since the probability that a RW visits a node with the degree k is proportional to k [7,20],
the probability that a query packet finds a requested file at a node with degree k is proportional to k in n-RW
model. But in NLL model, due to the random walking information packets, the probability is proportional to
k2 [5]. As a result, the hubs in the network can collect more packets in our NLL model than n-RW model, and
thus become effective attractors. This effect becomes enhanced if the second moment of degree distribution
hk2
i diverges, or for SF networks with go3. In SF networks the degree of the hub increases with N [1].

Therefore, both hTiNLL and hTi2�RW decrease but hTi2�RW � hTiNLL increases as increasing N. These
provides an indirect evidence that the hk2

i grows more rapidly than hki as increasing N in the Gnutella
network.
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Finally, in order to systematically analyze the data in Figs. 2(a) and (b), we calculate the difference in the
order of magnitude of searching time, Di;j log10hTi � log10hTii � log10hTij, between models i and j. Here i

and j represent the name of each model (2-RW, NLL, and FB). As a simple criterion, we assume that the hTi’s
of models i and j are comparable if Di;j log10hTio1. Fig. 2(c) shows the Di;j log10hTi obtained from the data
in Fig. 2(a). The data shows that D2�RW ;NLL log10hTi increases as N increases. On the other hand,
DNLL;FB log10hTi decreases and becomes less than 1 when N45000. This implies that hTiNLL becomes
comparable with hTiFB when N45000 on the theoretical networks. We also calculate the Dij log10hTi for real
Gnutella network and find the similar tendencies (which is not shown). By extrapolating the result we obtain
that DNLL;FB log10hTio1 when N4107 for real Gnutella network.

In this paper we introduce a new model for information search, which can be easily applied to many
information search problems such as P2P file sharing networks. By numerical simulations, we verify two
important benefits of our model: (1) first of all, our model can drastically decrease the traffic congestion
compared to FB algorithm and (2) it can provide more implementable scalability in average searching time
than n-RW model. Because of these two benefits, NLL algorithm suggested in this paper can be utilized to
optimize information search on pure P2P networks. The dynamical properties of NLL model can be easily
understood from the DCP and the dynamical properties of RWs on complex networks. Since the probability
that a RW visits a node with degree k is proportional to k [7,20], PðkÞ becomes relevant. If hk2

i diverges then
most of the information would be gathered at several hubs without the knowledge of the global information
on the distribution of files. Therefore, the hubs spontaneously play a very similar role of the directory servers
in structured P2P networks [14] which provide better scalability than n-RW model.

Though P2P network is virtual network, nodes with large number of connections in real network can have
large number of degree in P2P network. In certain real P2P networks such as Gnutella, the nodes which satisfy
some requirements such as sufficient network resources, CPU speed, etc. are prepared to be the hubs with a
large number of degree [21]. For simplicity, we assume the degree of virtual P2P network is approximately
proportional to the degree of real network and each node and link can treat an unlimited amount of packets at
each time step. However, the detailed studies with more realistic restrictions such as finite buffers, different
data transfer rate and ad hoc properties of network topology are necessary for further studies to apply NLL
model to the real P2P applications.

Finally, some information transfer networks, such as neural networks, satisfy Eq. (2) with go3 [12] or have
huge hub like the Gnutella network [16]. In these networks, we expect that the networks have self-organized
their structure to improve the efficiency for finding information such as reducing the traffic or the searching
time. By combining our results, we expect that the non-mean-field type behavior of DCP can give a clue to the
emergence of SF structure or formation of hubs in information transfer networks observed in nature [12,33].

We thank to Drs. Kwon and Yoon for useful discussions. This work is supported by Korea Research
Foundation Grant no. KRF-2004-015-C00185 and Grants nos. R01-2006-000-10470-0 and F01-2006-000-
10093-0 from the Basic Research Program of the Korea Science & Engineering Foundation.
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