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Abstract

We study the synchronization of Rössler oscillators as prototypes of chaotic systems on scale-free complex networks. As

it turns out, the underlying topology crucially affects the global synchronization properties. In particular, we show that the

existence of loops facilitates the synchronizability of the system, whereas Rössler oscillators do not synchronize on tree-like

topologies beyond a certain size. Moreover, it is not the mere number of loops that counts for synchronization but also the

type of loops. By considering Cayley trees modified by additional loops in different ways, we find out that also the

distribution of shortest path lengths between two oscillators plays an important role for the global synchronization.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Synchronization is a ubiquitous phenomenon in nature, ranging from flashing fireflies in the Australian
forest [1], crickets chirping in unison [2] in natural systems, tremors in Parkinson’s disease or epilepsy in
medical applications [3], laser arrays [4], or Josephson junctions in physics [5], electrochemical oscillators in
chemistry [6] and designed synchronization in robotics. Synchronization properties of limit-cycle oscillators
were studied in a number of papers (for a review see Ref. [7]). In particular, recent results on the
synchronization transition of a modified Kuramoto model on scale-free networks show that the details of the
underlying topology such as the type of intermodular connections can crucially affect the properties of the
synchronization transition [12]. Even systems which are individually chaotic like Rössler oscillators, can
synchronize under certain conditions. Rössler oscillators may be regarded as prototype of chaotic systems.
According to a conjecture of Calenbuhr and Mikhailov [8], the behavior of Rössler oscillators shows some
universal features. For a certain class of interactions and under the influence of noise, clusters of synchronizing
oscillators form above a certain threshold in the coupling strength, while for larger couplings, after an
intermittent phase, the whole set of oscillators synchronizes.

Rössler oscillators were studied for different interaction schemes and on different geometries [9–11]. Usually
the synchronization properties of regular networks were compared with those of scale-free or small-world
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networks. The improved synchronizability of scale-free and small-world networks was usually addressed to
the shorter average lengths of shortest paths. However, as it was shown in Ref. [11], it is not the average
shortest path length alone that determines synchronizability, but when it goes along with stronger
heterogeneity, the heterogeneity acts against synchronization. A possible explanation was provided in Ref. [10]
by a comparison with a diffusive process, accounting for the very fact that ‘‘information’’ does not only spread
along the shortest path. Our results point in the same direction that the average shortest path is not the
essential criterion for synchronizability, but instead of comparing regular with scale-free and small-world
topologies, we focus mainly on scale-free topologies. Scale-free networks seem to be realized in a number of
natural and artificial systems like genetic or proteomic networks, the world-wide-web and the internet.
Synchronization is certainly one of the important dynamical processes, running on these networks, as it is
supposed to be a necessary ingredient for the efficient organization and functioning of coupled individual
units, that, after all, lead to well coordinated behavior in time. Therefore, we are interested in the compatibility
of scale-free topologies with synchronization, in particular for the case that the individual dynamics are
chaotic. While usually the synchronization transition has been studied as a function of the coupling strength or
the system size, we describe here (in addition to the usual approach) a transition to the synchronized phase as a
function of the topology. In particular, we vary the topology by means of the parameter m defined in the
growth algorithm of Barabási and Albert, where m denotes the number of newly attached edges in a single step
[13]. As we shall see, when a ‘‘scale-free’’ tree (obtained for m ¼ 1) becomes too large in size to allow
synchronization, whatever the size of the coupling is, synchronization becomes possible beyond a critical
threshold in the coupling as soon as m41. One characteristic difference of topologies with m41 as compared
to m ¼ 1 is certainly the contents of loops, the larger m, the more loops. The natural question then is, whether
it is the mere number of loops or also a specific type of loops that facilitates synchronization? In order to
answer this question we introduce loops into Cayley trees in a controlled way. As a result, we shall see that
again it is not the average shortest path, but the absence of long tails in the distribution of shortest paths that
matters. In other words, the essential loops are those which simultaneously provide shortcuts.

In Section 1, we introduce the model and define the order parameters that are used to distinguish the phases
with and without the condensates of synchronized oscillators. In the second section we describe details of the
simulations and summarize the results in the last section.
2. The model

As prototype of a chaotic system we consider N Rössler oscillators, distributed on the nodes of a scale-free
network, generated with the growth algorithm of Barabási and Albert [13] (see below). Each individual
oscillator at node i, i 2 f1; . . . ;N} is described by three variables xi, yi, zi. These variables satisfy a set of
dynamical equations that were originally proposed by Rössler [15] for describing chaotic oscillators similar to
those known from the Lorenz equation [16]. Meanwhile this model is considered as one of the prototypes for
chaotic behavior that easier yields synchronization than the Lorenz system. The dynamical equations are given
by

_xi ¼ �oyi � zi,

_y ¼ oxi þ ayi,

_zi ¼ b� czi þ xizi. (1)

For o ¼ 1, a ¼ 0:15, b ¼ 0:2, c ¼ 8:5 the system is in the chaotic state. For this choice of parameter values the
attractor is chaotic and has a spiral shape. Since chaotic rotations in the phase space are nearly isochronous,
such attractors, when coupled, can be relatively easily driven to the synchronized state. Among various
possibilities of coupling these oscillators, we choose

_xi ¼ �yi � zi,

_yi ¼ xi þ ayi þ � ðȳi � yiÞ,
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_zi ¼ bþ ðxi � cÞzi þ � ðx̄iz̄i � xiziÞ, (2)

where x̄i, ȳi, z̄i are averages defined as

x̄i ¼
1

ki

XN

j¼1

Aijxj (3)

and accordingly for ȳi and z̄i. The variable ki denotes the degree of node i, Aij is the adjacency matrix i.e.,
Aij ¼ Aji ¼ 1 if i and j are connected and 0, otherwise. This is the only place at which the topology of the
network enters. Due to the coupling, the individual oscillators are forced to adjust their dynamics to that of
their neighbors. Corrections, introduced by the coupling, can be proportional to instantaneous differences
between the state variables themselves (second equation in (3)) or to differences between nonlinear functions
of those variables (third equation in (3)). Later we check the dependence of the results on this very choice by
introducing a linear coupling scheme, see Eq. (4). For ki ¼ N � 1 and Aij ¼ 1 for all i; j 2 1; . . . ;N the system
corresponds to a globally coupled population of Rössler oscillators as it was considered in Ref. [17]. In our
description, the population is partially coupled rather than globally. It is coupled along the links of the scale-
free network, therefore, the driving force towards the common synchronized state is produced by nearest-
neighbors, whose number varies according to the scale-free degree-distribution. Since our averages are still
node-dependent, the stability analysis of Ref. [17], derived for x̄ ¼ ð1=NÞ

PN
j¼1xj, (ȳ; z̄ alike,) does not

immediately apply. For this case of global coupling, in which the driving force tries to reduce the difference
from the common synchronized state ðx̄; ȳ; z̄Þ, one expects a globally synchronized stable state for � ¼ 1; ao1,
so that all deviations from global averages exponentially decrease with time [17]. In our scheme the force
drives to node-dependent average values over nearest neighbors whose number is neither regular nor N � 1,
i.e., all-to-all. Nevertheless, we find a result quite similar to the all-to-all case: a global attractor to a
synchronized state exists as long as �o1:25. The stability is evident on the level of numerical simulations.

In order to check how the results depend on the nonlinear terms / xz of our coupling scheme, we also made
some tests for the linear vector coupling defined according to

_xi ¼ �yi � zi þ � ðx̄i � xiÞ,

_yi ¼ xi þ ayi þ � ðȳi � yiÞ,

_zi ¼ bþ ðxi � cÞzi þ � ðz̄i � ziÞ, (4)

where i ¼ 1; . . . ;N, as it was used in Ref. [14].

2.1. Choice of order parameters

As first indicator for a partially or fully synchronized state, we measure the histogram of instantaneous pair
distances dijðtÞ between all pairs of nodes as a function of the simulation time, defined by [14]

dij ¼ ½ðxi � xjÞ
2
þ ðyi � yjÞ

2
þ ðzi � zjÞ

2
�1=2, (5)

where i; j ¼ 1; . . . ;N. A fully synchronized state shows up as a sharp peak in the distribution of dij , since the
pair distances between any two nodes approach zero. No synchronization or desynchronization in the
opposite case lead to a broad distribution. As order parameters in the usual sense, that is quantities which vary
between 0 and 1(0 for the desynchronized phase and 1 for the fully synchronized phase), we choose two order
parameters r and s, as proposed in Ref. [14], defined in the following way:

rðtÞ ¼
1

NðN � 1Þ

XN

i¼1

XN

j¼1;jai

Yðd� dijðtÞÞ (6)

and

sðtÞ ¼ 1�
1

N

XN

i¼1

YN

j¼1;jai

YðdijðtÞ � dÞ, (7)
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where YðxÞ is the Heavyside function, i.e., YðxÞ ¼ 1 if xX0 and YðxÞ ¼ 0, otherwise. Due to the finite
numerical accuracy one should introduce a distance that is maximally allowed between synchronized states: a
radius of a tiny sphere, inside which all states are considered as synchronized. This role is played by the
parameter d; in our computations d ¼ 0:0001 was used. For further comments on the choice see below. The
order parameter rðtÞ gives the fraction of pairs of elements ði; jÞ which are synchronized at time t (i.e., dijpd).
This fraction is one if all possible pairs are synchronized and zero if no pair is synchronized, intermediate
values 0oro1 reflect partial synchronization. The second order parameter sðtÞ is more sensitive to partial
synchronization. The second term on the r.h.s. of Eq. (7) only contributes to the fraction if node i has no other
node within a distance of d. Therefore, s is already 1 when the total number of states is a partition of
synchronized pairs without synchronization between the pairs. In general we have roso1 (as it is confirmed
in the figures below) if some elements form clusters while others are still isolated. From a simultaneous
measurement of r and s it is possible to obtain some information about the partial synchronization that is
usually a precursor to the fully synchronized state. In general, we measured all three functions dij , r, and s as a
function of the number of iterations.

3. Measurements and results

3.1. Generating the topology

For the scale-free topology we used the growth algorithm of Barabási and Albert [13], later referred to as
the BA model. In each step, one node with m edges is added to the network. It is connected to m of the
formerly generated nodes according to preferential attachment. In our simulations we chose m between 1 and
10. For testing the role of the loops we used the regular topology of a Cayley tree with z edges at each node,
z ¼ 3; . . . ; 6. The tree structure was then modified in various ways as we shall see below. We also made some
runs on a small-world topology, starting from a regular ring topology with k ¼ 2 neighbors and randomly
adding shortcuts to each node with probability p ¼ 0:01 according to the algorithm proposed by Newman and
Watts [18].

3.2. Choice of parameters

For the parameters of the individual Rössler oscillators we chose a ¼ 0:15, b ¼ 0:20, c ¼ 8:5 throughout all
simulations to make sure that the individual systems are in the chaotic regime. The total number N of
oscillators was varied between 10; 50; 200 up to 500 on the scale-free topology, and N ¼ 190 on the Cayley
tree. The parameter m of the growth algorithm varied between 1 and 10, the coupling strength � was out of the
interval ½0:1; 1:25�. In the numerical simulations of Eq. (2) we used the fourth order Runge–Kutta method with
a typical time-step size of dt ¼ 0:001 (when N ¼ 200). Variation of dt between 10�12pdtp10�1 led to
qualitatively the same results.

3.3. Results for m ¼ 1

Fig. 1(a) displays the results for the histogram of distances for m ¼ 1, N ¼ 200 and the largest possible value
for the coupling �; � ¼ 1:25, above which the numerical integration becomes unstable. For smaller couplings
the distribution looks qualitatively the same. The distributions are broad and do not indicate any
synchronized state. Fig. 1(b) indicates a transition to a synchronized state for m ¼ 2 when the coupling �
exceeds 0:3. The histogram has two narrow peaks for � ¼ 0:4 and 0:5, indicating a synchronized state for both
couplings. This result is further supported by the corresponding results in measurements of r and s as shown in
Fig. 2(a) and (b), respectively, r stays zero for m ¼ 1, while s increases from � ¼ 0:1 on, indicating partial
synchronization. The value of N ¼ 200 seems to represent the large-N limit, for the considered range of � and
m, since we obtained the same result for r and s for N ¼ 300; 400; 500. On the other hand, for smaller systems,
No20, we do see a fully synchronized state when the coupling � exceeds a critical threshold. As value for d in
Eqs. (6) and (7) that accounts for the finite numerical accuracy, we choose d ¼ 0:0001. For smaller values we
observe large variations in the long-time behavior of r and s. On the other side, it is obvious that for d too
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Fig. 1. Histogram of all pair distances between oscillators on a BA network with (a) m ¼ 1, (b) m ¼ 2, for N ¼ 200 and various couplings

�, that is nðdÞ denotes the number of pairs with distance d, normalized over the total number of pairs of the network.
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Fig. 2. Order parameters (a) r and (b) s as a function of the coupling strength � for different values of m, N ¼ 200.
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large, the values of r and s are stable over time, but the larger d, the more oscillators appear as synchronized
due to the too coarse resolution. The parameters loose their sensitivity to synchronization, so that the number
of synchronized oscillators gets d-dependent, until the whole system appears as synchronized. Here d ¼ 0:1
turned out to be an upper bound, so that 0:0001odo0:1 provides a window that is small enough to
distinguish between synchronized and desynchronized states and large enough to make r and s insensitive to
numerical fluctuations. There we find a plateau for the values of r and s, that is, the features of synchronization
become independent of the size of d.

3.4. Results for m larger than one but still integer

If we keep the number N of oscillators fixed to 200, we observe for m41 a fully synchronized state above a
critical threshold in the coupling �; this threshold is the larger the smaller m, again ros in general, as seen from
Figs. 2(a) and (b).

3.5. Results for intermediate non-integer m

One of the main differences between the Barabási–Albert networks with parameter m ¼ 1 and m41 is the
tree-like structure for m ¼ 1 and the existence of loops for m41. In order to check whether it is only the loops
that facilitate synchronization and how many loops are needed, we generalized the growth algorithm to
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non-integer values of m in the following way. We introduce an additional probability pm for a new node to
have m ¼ 1 edges and probability ð1� pmÞ for having m ¼ 2 edges attached to the nodes of the network when
it is introduced during the growth process. The distribution of pair distances of oscillators for 1ohmio2 is
displayed in Fig. 3. From the pronounced peak in the distribution nðdÞ for hmi ¼ 1:4 and the broader
distribution for hmi ¼ 1:35 we conclude that (for the given parameters � ¼ 0:9; N ¼ 200) the transition occurs
between hmi ¼ 1:35 and hmi ¼ 1:4. For given N and � we therefore observe a transition to a fully synchronized
state as a function of ‘‘topology’’, parameterized via the parameter m. Fig. 4(a) shows that the position of the
transition, now in m rather than in �, depends on the coupling strength for fixed N. The smaller �, the larger
mc. An interesting feature is seen in Fig. 4(b), where s is plotted as a function of m. For � ¼ 0:3 and m ¼ 1, the
finite value of s indicates some partial synchronization, s then drops to zero at m ¼ 2 and increases to 1 for
m ¼ 3. As we have argued above, s ¼ 1 does not necessarily imply full synchronization, but some partial one,
at least. It should be noticed that the behavior of s is non-monotonic as a function of m. A similar non-
monotonic behavior of s as function of time was observed in Ref. [8] for Rössler oscillators, for which a partial
synchronization was followed by desynchronization, before the full synchronization set in. Obviously, in both
cases there is not a ‘‘continuous’’ route to synchronization in the sense that a desynchronized state is followed
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Fig. 3. Histogram of pair distances on a BA model with 1ohmio2 with N ¼ 200 and � ¼ 0:9. The diagram indicates synchronization for
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first by a partially synchronized and next by a fully synchronized state. With m, the number of loops increases
in the Barabási–Albert network, but as we shall see in the following section, it is not the mere number of loops
that determines the features of synchronization, so that we finally do not have a detailed ‘‘microscopic’’
understanding of the non-monotonic behavior as function of m.

3.6. Rössler oscillators on a Cayley tree

From the former results we conclude that a certain number of loops facilitates synchronization on scale-free
networks, the larger m, the more loops [19], the smaller the coupling strength needed for synchronization. In
order to check whether it is the mere number of loops that facilitates synchronization or also the type of loops,
we studied N Rössler oscillators on a Cayley tree whose regular structure is modified in a controlled way. In
version (a) we add edges with probability pa to connect pairs of nodes with mutual distance 2. In this way, we
(b)(a)

pa

pa
pb

pb

pb

Fig. 5. Cayley tree for z ¼ 3 and additional interconnections (dashed lines) attached according to the two rules (a) and (b), as described in

the text.
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introduce a certain number of triangles at random locations as typical local loops, see Fig. 5(a). In version (b)
we add edges between pairs of nodes (with arbitrary mutual distance), randomly selected with probability pb

(Fig. 5(b)). The result of additional edges according to (a) is no improvement of synchronization as long as
pao0:99, as it is seen from histograms of pair distances nðdÞ, qualitatively similarly looking to those of
Figs. 6(a) and (b), not displayed here. In case of edges added according to (b) we have varied the probability pb

between 0.0005 and 0.99. Already for pb ¼ 0:006 this leads to a small-world network á la Newman and Watts
[18], showing synchronization in the histogram of nðdÞ, (see Fig. 6(d)). The critical probability below which
there is no synchronization is given by pc ’ 0:006. Along with the histograms of nðdÞ we have measured the
distributions of shortest path lengths in the various loop-modified trees, see Fig. 7. Figs. 7(a) and (b) show
asymmetric broad and non-Poissonian distributions, corresponding to phases of desynchronization, as it is
obvious from Figs. 6(a) and (b). The shortest path distributions become Poissonian-like and show the absence
of long tails when the system reaches synchronization in Figs. 6(c) and (d). Qualitatively, the same result we
find for a synchronized Barabási–Albert network for m ¼ 2 (not shown here). It is interesting to notice that it
is not the average shortest path length that is responsible for synchronization. On a Cayley-tree this is easily
checked by keeping the total number of nodes almost constant, but varying the coordination number z. In this
way the diameter of the Cayley-tree is reduced, but independently of the value of z, synchronization is only
possible if the network contains a sufficient number of shortcuts. Without shortcuts, no synchronization phase
is found however small the average shortest path length is.

Long branches of trees support independent oscillatory dynamics. From the above results, we find
numerical evidence that neither the mere existence of loops nor the existence of a short average-path length
alone are sufficient to guarantee synchronization.
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4. Summary and conclusions

We studied an ensemble of Rössler oscillators on scale-free networks constructed by the Barabási–Albert
growth algorithm. In contrast to the usual investigations we studied the transition from the desynchronized or
partially synchronized state to the fully synchronized state as a function of the network topology,
parameterized by m, the number of newly attached edges in the growth algorithm. For the tree topology
(m ¼ 1) and given coupling strength �, there is a fully synchronized state below some critical size N that
disappears for larger N. This result is similar to synchronization of Kuramoto oscillators on Cayley trees
which is possible for small enough size N and coordination number z [21]. Above a certain number of nodes,
the tree of Rössler oscillators can no longer be synchronized, however large the coupling strength is. It is then
the parameter m that introduces loops and shortcuts into the tree, and along with this allows full
synchronization, when m exceeds a certain value that depends on N and �. Vice versa, the threshold in �
depends on N and m. Small N, large � (chosen out of the stability regime) and large m favor synchronization.
These qualitative results are not specific for our choice of nonlinear couplings between the Rössler oscillators,
but also hold for the vector coupling scheme of Eq. (4). Moreover, numerical simulations of Rössler oscillators
on Cayley trees with randomly introduced small and large loops suggest that it is not only the mere number of
loops that favors synchronization, but it is also a sufficient number of loops that provide real shortcuts in the
system.
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