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Abstract

A growth model in quenched random media which has the mean-�eld-like driving force F
and local avalanche processes simultaneously and explicitly has been suggested and studied by
simulations. It has been found that this model belongs to the same universality class as the
directed percolation depinning models. The critical moving regime of the suggested model has
been found to be critically the same as a self-organized depinning model. Some discussions on
the relation between the self-organized model and DPD models through our model have also
been given. c© 1999 Elsevier Science B.V. All rights reserved.

PACS: 05.70.Ln; 47.55.Mh; 05.40.+j

Recently there have been many studies on the depinning of the interfaces in quenched
random media by the driving force F [1–8,10–12]. Such interface growths are known
to have three regimes. If F is weak ( pinned regime), then the driven interface is
eventually pinned. When F is increased to the critical force Fc which barely overcomes
the pinning force, then the interface begins to move. For F just above Fc (critical
moving (CM) regime) the velocity v of the interface follows the power law v ∼
f�(f = (F − Fc)=Fc). If F/Fc (moving regime), v increases linearly with F . One
of the possible continuum equations [4,5] for such interface growths is the Quenched
Kadar–Parisi–Zhang (QKPZ) equation [5]

@h(x; t)
@t

= �∇2h(x; t) + �(∇h)2 + �(x; h) + F; (1)

where h(x; t) is the height of the interface and �(x; h) is the quenched random force
with short-range correlations.
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Among the discrete lattice models which follow the QKPZ equation, there are models
which are called the directed percolation depinning (DPD) models [6–8]. The width
W of the interface in such models satis�es the dynamical scaling law as W =L�f(t=Lz)
[9], where the function f(x) is x� (with � = �=z) for x.1 and is constant for x/1.
In the CM regime (i.e., F ∼ Fc) of the DPD model, values of the exponents �, � and
� are known as [6–8,10,11]

�= 0:59–0:70; �= 0:63–0:70; � = 0:63–0:70: (2)

An interesting and variant growth model in quenched random media was recently
suggested by Sneppen [12]. Unlike the DPD models, the B model of Ref. [12] (Sneppen
B Model) does not have the driving force F for the pinning–depinning transition. In-
stead the growth is initiated by choosing the site with the global minimum of quenched
forces on the interface and the B model has the avalanche process to keep the magni-
tude of the slopes of the interfaces less than 1 or to keep the restricted solid-on-solid
(RSOS) condition [13] globally at any stage of the growth. In 1+1 dimension, the ex-
ponent � of the B model is approximately 0.63 which is very close to that of the CM
regime of the DPD model. Some of the scaling properties of the B model have been
shown to coincide with those of the CM regime of the DPD model [14,15]. In this
sense this model is called the depinning model of the self-organized criticality (SOC).
Although some researches have been done to understand the physical relation between
this model and the DPD models [14–17] by studying several di�erent aspects of the B
model, there has been no attempt to understand the model directly from a stochastic
model that has both the driving force F and the avalanche processes explicitly. We
want to show that the dynamical behavior of the B model is quite the same as that of
the CM regime of such a model, i.e., that the B model has a short cut which selects
the CM regime of our model. Another merit of the establishment of the present model
is that one can measure the dynamical exponent � in two di�erent ways. One way is
to use the time scale based on the growth attempts which is the method usually taken
in DPD models and the other is to use the time scale based on the actual growth [17].
As we will show by the data in Fig. 3, the discrepancy between the �(' 1) of the B
Model [12] and �(' 0:69) of the DPD model [6–8] can be understood from the results
of the two di�erent measurements of � in our model. Another motivation to study our
model is that the various exponents such as � and � which is related to the QKPZ
nonlinearity [10,11,18] can be de�ned and measured in our model, while in Sneppen
B model such exponents cannot be de�ned and measured. Through measurement of
� and � in our model we believe to understand intriguing Sneppen B model more
directly.
One of the methods to establish such a model is to use a mean-�eld-like driving

force. It will be shown that the model with the uniform driving force on each site
of the interface and local avalanches belongs to the same universality class as DPD
models. The details of our model are as what follows. In 1+1 dimension the model is
de�ned with a column coordinates i; i = 1; 2; : : : ; L and with a height coordinate h. A
uniformly distributed uncorrelated random number �i(h) between 0 and 1 is assigned
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Fig. 1. Two examples for the growth rules (ii)–(v), when F = 0:5. The shaded boxes represent the growth
zone for each growth attempt. In case (a) the growth zone have 4 columns n=4, Fpin =3:1, and Fpin¿nF .
The growth attempt is not allowed. In case (b) n = 6, Fpin = 2:2, and Fpin ¡ nF . The growth attempt is
allowed and the shaded boxes become fresh grown sites.

to each lattice point (i; h). The interface hi is grown from the initial at line hi = 0.
The interface is updated by the following steps. (i) Select a column at random. (ii)
Calculate the force Fpin to grow the selected column and to grow the neighboring
columns to satisfy the RSOS condition |hi−hi+1|61 on every column i. If this growth
zone starts from the jth column to ( j + n− 1)th column, then Fpin =

∑( j+n−1)
j �i(h).

(iii) Calculate nF , where F is a mean-�eld-like uniform force and n is the number
of columns in the growth zone of the step (ii). (iv) If Fpin6nF , then all the growths
hi + 1 at the columns in the growth zone are permitted. Otherwise, a new column is
selected at random [see Fig. 1 for examples of the processes (ii)–(v)].
Fig. 2 shows the dependence of the growth velocity v(=d〈h〉=dt) on f (or F) for

the substrate of the size L = 4096 on the log–log plot. Each data is taken in the
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Fig. 2. Plot of ln v against lnf for d = 1 + 1 in CM regime. Inset shows the plot of v against F .

saturated state (t/Lz) by averaging over 100 independent runs. By �tting these data
to v ∼ (F − Fc)�, we obtained the critical driving force as Fc = 0:644± 0:005 and the
velocity exponent as � = 0:63 ± 0:03. This result for � is consistent with that of the
DPD models [10,11] (see Eq. (2)).
We measured the early time behaviors of W (t) for F = 0:65(' Fc) using the two

di�erent time scales. We used a substrate of size L = 8192. The results are shown in
Fig. 3. By �tting the data for W (t) based on the time scale of the growth attempts to
W (t) ∼ t�, we obtained � = 0:68 ± 0:01. This �-value is nearly the same as that of
the CM regime in DPD models. In contrast we obtained �=1:03± 0:05 from the data
based on the scale of actual growths. The result for the actual growth time in the CM
regime is quite close to the �-value of Sneppen-B model [12] and of DPD models for
the actual growth time [17]. As explained in the part where the motivation of our study
is introduced, the discrepancy between �(' 1) of the B Model [12] and �(' 0:69) of
the DPD model [6–8] can be physically understood from the results in Fig. 3.
To determine the roughness exponent � in the CM regime (F =0:65), we measured

the local widths w(l)’s for the windows whose sizes are l = 64; 128; 256; 512 on the
substrate size L= 8192 in the saturated state. From the data in Fig. 4 and the relation
w(l) ∼ l� [6], we obtained � = 0:63 ± 0:01. This � value is nearly the same as those
of the CM regime of the DPD models (Eq. (3)) and of Sneppen B model [12]. This
result is an expected one if one believes that the CM regime of our model is critically
the same as the B model.
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Fig. 3. Plots of lnW against ln t using two di�erent time scales.

Fig. 4. ws in a saturated state on a square lattice as a function of the local window size l=64; 128; 256; 512.

To understand our model more deeply we measured the tilt-dependent velocity v(m)
on the substrate of size L = 8192 for several F’s in the CM regime. The results are
shown in Fig. 5a. v(m) is generally believed to depend on the initial tilt m through
the function v(m) = v(0) + �m2 [19], where � is the coe�cient of KPZ nonlinear term
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Fig. 5. (a) Dependence of v on the tilt m for the various Fs in CM Regime. m is the slope of the substrate.
(b) Data collapse of the velocities using the relation v ∼ f�g(m2=f�+�). Here the used values of the
exponents are � = 0:69, � = 0:57 and Fc = 0:644.

|∇h|2 in Eq. (1). Since the data in Fig. 5a do depend on m, there exists a non-zero
� near Fc in our model. From this result we can conclude that the CM regime of our
model has the KPZ nonlinearity. To study this fact more quantitatively, we analyzed
the data for v(m) by using the scaling relation v(m;f) ∼ f�g(m2=f�+�) suggested by
Amaral et al. [10]. As one can see from Fig. 5b, the data for v(m) is best �tted to
the scaling relation when �=0:69, �=0:57 and Fc = 0:644. These values of Fc and �
are consistent with the corresponding values obtained from Fig. 2. The values of the
exponents � and � are nearly the same as those obtained in the DPD models through
the measurement of v(m) and the same scaling relation [10,11].
We have also studied the Moving regime (the regime with F/Fc) of our model

and found the moving regime belongs to thermal KPZ universality class as the moving
regime of DPD models and as Sneppen B model without any random pinning force �
[6–8,11,12,17,20].
From these numerical results we can conclude that the established uniformly driven

growth model with avalanches for the RSOS condition in quenched media belongs to
the same universality class as DPD models. Especially it has been found that � from
the time scale based on the actual growth is nearly the same as that of Sneppen B
model, whereas � from the time scale based on the growth attempts is quite close to
that of the DPD models. In addition to these exponents we have measured � and �
which cannot be de�ned in Sneppen B model and the values of � and � are nearly
the same as those of DPD models.
Final discussions are on two points. The �rst one is on the relation of our model

and Sneppen B model. Except for the numerical results which have supported that the
saturated state of CM regime of our model is critically the same as that of Sneppen
B model, we have more direct argument for this. The argument is related to the value
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of Fc. Fc ' 0:65 in our model can be explained from the property of the saturated
state of Sneppen B model. If the saturated state of our model were just the same as
that of the Sneppen B model, then Fc should be estimated from the growth of the
growth zone which consists of the site with the largest �min and its neighbors for the
avalanches. Here �min is the minimal � of the quenched noises along a certain interface.
According to Ref. [16] the largest �min is 0.461. The characteristic avalanche size s in
the Sneppen B model is known to be about four [12] and � of these avalanche sites
are uniformly distributed in the interval [0:461; 1] [14]. The average pinning force 〈�〉
of each avalanche site is about 0:731. Thus from s×Fc = 0:461+ (s− 1)× 0:731 with
s = 3 ∼ 4, the estimated Fc around 0.67, which is close to the value of Fc obtained
from Fig. 2 and Fig. 5. This coincidence also gives another proof that the saturated
state of CM regime of our model is critically the same as that of Sneppen B model.
The second discussion is on the parallel and perpendicular correlation lengths �‖; �⊥

[21] of the interface. In DPD models the interface is believed to be pinned by the
directed percolation path [6,8] and the exponents �‖ and �⊥ [21] of DPD models are
known to be �‖ ≈ 1:73 and �⊥ ≈ 1:10 [8,10,21]. The exponents �‖ and �⊥ of our model
can also be estimated from the two relations � + � = 2�‖(1 − �) [18] and � = �⊥=�‖
[11,12,16]. From numerical results for �; � and � of our model the estimated values for
�‖ and �⊥ of our model are �‖ ≈ 1:73 and �⊥ ≈ 1:10. These values are nearly the same
as those of DPD models [21,22]. The interface of our model thus should be pinned
by nearly the same path as the directed percolation path. This fact also supports that
the CM regime of our model belongs to the same universality class as DPD models.
Two �nal discussions should explain more physically why the numerical results of our
model are consistent with Sneppen B model and DPD models and thus explain the
relationship between Sneppen B model and DPD models more clearly.
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