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Abstract. Exponential random graph theory is the complex network analog
of the canonical ensemble theory from statistical physics. While it has been
particularly successful in modeling networks with specified degree distributions,
a naive model of a clustered network using a graph Hamiltonian linear in the
number of triangles has been shown to undergo an abrupt transition into an
unrealistic phase of extreme clustering via triangle condensation. Here we study a
nonlinear graph Hamiltonian that explicitly forbids such a condensation and show
numerically that it generates an equilibrium phase with specified intermediate
clustering.
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1. Introduction

The study of complex systems found in various disciplines including engineering, biology
and sociology that can be represented as networked systems composed of nodes and edges
has garnered much interest from statistical physicists in recent years. Building upon a
rich and long tradition of studies on many-body systems, they have successfully adapted
analytical and computation tools to understand networks [1]-[3].

A network modeling methodology that shows a striking resemblance to the canonical
ensemble theory from statistical physics is the exponential random graph (ERG) theory,
originally developed in statistics and currently the most actively studied in social network
analysis (SNA) circles [4]-[6]. Given that the potential readership of this paper will be
composed of statistical physicists, the premise of ERG is perhaps most simply explained
using the language of statistical physics. Here, as in the canonical ensemble theory, one
considers an ensemble I" of graph configurations (microstates) G whose probabilities in I'
are given by P(G) = > e 9 /Z, where H(G) is the graph Hamiltonian, a function
of network characteristics of G, and Z = Y e (@ is the partition function. Both in
social network analysis and in statistical physics, the Hamiltonian H(G) is typically set
up to be a linear function of network variables or network statistics such as the number of
edges m(G) in the graph. When the network is simple and unweighted (i.e. the number of
edges between two nodes is either 0 or 1) it is straightforward to show that H(G) = 0m/(G)
generates the so-called Erdos-Rényi random graph in which two nodes are connected with
probability p = 1/(1 + €%) [5]. The expected number of edges 7 in a network of n nodes
is in this case, therefore, given as

m:<n)p:n(n—1) 1 0

2 2 1+ e’

controlled by the conjugate variable . If one then equates ™ from equation (1) with the
actual number of edges m in the network data under study, this serves as the null model of
the network under study with the number of edges as the only observable. Note again that
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only the number of edges m is an explicit variable in constructing the network ensemble!;
whether the model is sufficient (i.e., is a good approximation of network data) is to be
judged on the given model’s ability to reproduce other (not used as input to the model)
network characteristics such as the degree distribution, cluster size distribution, degree—
degree correlation, etc. A significant disagreement between the expected characteristic of
a model and the data may indicate that the choice Hamiltonian needs to be reformulated;
for instance, the ubiquity of scale-free (power-law) networks where the degree distribution
is fat-tailed renders the simplest Erdos—Rényi network model (which has a Poissonian
degree distribution) inadequate, necessitating the introduction of alternative forms of the
graph Hamiltonian. One possibility is to incorporate explicitly the node degrees e{k;}
(i € N =1,...,n is the node index) themselves to form the so-called linear degree
Hamiltonian Hyp(G):

Hip(G) = 01k1(G) + - - - + 0,kn(G), (2)

where {;} are the conjugate variables that now control the expected degrees {k;} in a
manner similar to what 6 did to 7 in equation (1).2 On a historical note, the study of
Hyp was prompted by the hypothesis that heavily skewed degree distributions such as
the power law may cause the observed negative correlation between degrees of connected
nodes, while the Erdos-Rényi network produces no such correlation in the thermodynamic
limit (n — o0) [5]. On the other hand, it was shown analytically that power-law networks
generated via equation (2) exhibited negative degree correlation, proving the hypothesis,
and thus that the skewed degree distribution was indeed responsible for the negative
degree—degree correlation. This is, in fact, a typical example of the ERG modeling (also
of the general statistical modeling) procedure—identifying ‘important’ features of the
observed system and testing its sufficiency via comparing the model’s predictions and real
data (i.e. the ‘goodness of fit’ of the model in the statistical sense; see [9]) and, when a
closer agreement is desired, refining the hypothesis and repeating the procedure. This
process is presented schematically in figure 1.

Not surprisingly, the development of ERG as a network modeling framework closely
follows the study of graph Hamiltonians of increasing complexity. ERG models of
historical import include, in addition to the simplest H(G) = 0m(G), the Holland and
Leinhardt model of reciprocity, the Strauss model of clustering, the 2-star model, and
the generalized k-star models [5]. We refer interested readers to introductory articles and
significant recent work from the SNA community for more detail [6]-[8], [9].

To a statistical physicist, the benefits of such a formalism are obvious: one can utilize
appropriate computational (such as the Metropolis—-Hastings algorithm) and analytical
(such as the Feynman-diagrammatic method) tools to study the properties of the
model [5, 10, 11]. It should also be noted that the Hamiltonian need not be linear at all. For
instance, when one wishes to construct an exponential random graph model of a network
with a specified degree sequence, H(G) only needs to be a function of the node degrees
{ki(G)} in G, i.e. H(G) = H[{k;(G)}] wherei € N'={1,...,n} is the node index. This is
sufficient to guarantee that two configurations G, G with an identical degree sequence have

! Typically we consider the number of nodes n as given.

2 Note the absence of the temperature 8 in equations (1) and (2). Here, one may consider 3 as having been
absorbed into {6}.
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Network Data
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Figure 1. The schematics of the exponential random graph modeling of network
data. From the network data of interest (top) one selects network variables such
as the node degrees {k;} (left) from which one then forms a Hamiltonian H ({k;}),
whose solutions and predictions are compared with the network data. Significant
disagreements may necessitate a new selection of variables or reformulation of
the Hamiltonian.

the same probability in the ensemble, and the aforementioned Hyp is one possibility. Thus
there is much freedom in choosing the form of the H(G), meaning that there exist ample
avenues for exploration of various possible forms of Hamiltonians as one sees fit, not limited
to linear forms. In fact, linear forms such as Hyp of equation (2) are often not robust in the
presence of a perturbation, in the sense that when a composite Hamiltonian H = Hyp+H'
is used the equilibrium degree distribution may differ significantly from the one specified
from Hyp, defeating the modeler’s intention to generate a desired degree distribution using
Hyp. The purpose of this paper is to review the clustering perturbation and compare the
characteristics of linear and nonlinear Hamiltonians under it. For simplicity, we here
consider only unweighted and undirected graphs.

2. Degree Hamiltonians
Here we briefly review Hip(G) = ), 6;k;, equation (2), specifically when the network is

sparse (k; ~ O(1) < y/n). In such a case it is well known that the probability p;; that
nodes i and j are connected is e %e~% leading to the average degree (k;) of node i [5]

(ki) = Zpij = Z e b

i#i i#i
= (n—1)e / e ?p(0)dh = A(n — 1)e %, (3)

where the latter integral form is valid for a large network (n > 1), p(0) is the distribution
density of 6, and A = [*°_e?p(0)d0 is thus a constant. Setting (k;) = ¢;, the specified
(desired) degree of node ¢ and inverting equation (3), we obtain 6; = —In(g¢;/A(n — 1)).

doi:10.1088/1742-5468 /2011 /08 /POS00S 4
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Hip then becomes

Hip(G) = 0;ki(G)

ieN
== k(@) Ing +In(A(n—1)) Y k(G)
ieN ieN
==Y k(G)Ing +2M(G) In(A(n — 1)), (4)
iEN

where M(G) = § >, ki(G) is the number of edges in G. One can also show that the
ensemble generated via Hyp is equivalent to the configuration model, a popular and useful
framework for studying graphs with arbitrary degree distributions [12].

Now, if we restrict the ensemble I' = {G} to contain only network configurations
G with a fixed number of edges M(G) = My = 5, ¢; (corresponding to the canonical
ensemble of particles), the second term 2M (G) In A(n—1) becomes a constant. Therefore,
we can safely ignore it and use an even simpler form

Hip(G) == ki(G)Ing:. (5)
ieN
This is particularly useful in edge-conserving Monte Carlo simulations, where the
Metropolis—Hastings algorithm would consist of relocating the edge between a randomly
selected connected node pair to between a randomly selected unconnected pair with
probability 1 if it results in a lower energy, and with probability e 27(©) < 1 when it
results in a higher energy.

It is important to note that it is the ensemble average (k;) of a node that is to be
matched with its prescribed degree ¢;, and there is no guarantee that k; = ¢; strictly, even
at equilibrium: in fact, P(k;|¢;), the probability that a node with a prescribed degree ¢;
has degree k; at equilibrium, is

Plklg) = > | [T e @ TT (1 —e @), (6)

{Ni} FEN leN]

where 0; = —Ing;/A(n — 1), and {N}} is the set of all possible combinations of k£ nodes
from A excluding 7. From this, the total degree distribution P(k) in equilibrium is given
as

P(k) =Y P(klg)P(q), (7)
{a}

where P(q) is the prescribed degree distribution. It is unlikely that P(k = ¢|¢) = 1 in
equation (6), and thus we cannot expect P(k) = P(q). To find the general characteristics
of P(k) from equation (7) in comparison with P(gq), we performed a Monte Carlo
simulation (using the Metropolis—Hastings method described above) of Hyp for a network
of n =500 and P(q = 5) = P(q = 15) = £ for illustrative purposes, whose results are
shown in figure 2. In the figure, the prescribed P(q) is shown in gray, and the equilibrium
P(k) is shown in blue. While P(k) does exhibit peaks at k = 5 and 15, it also shows
a fairly wide distribution (although small in comparison with n), and the fluctuation is
visibly larger at k£ = 15, resulting in a lower peak. If the specified degree ¢ had been the
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Figure 2. The degree distributions from exponential random graph simulations.
For simplicity we set the specified degree distributions to be P(q = 5) = %
and P(qg = 15) = % (shown in gray). The linear degree Hamiltonian Hyp =
— > ien kilng; generates a smooth distribution over a wide range of degrees with
Poissonian-like peaks at k = 5 and 15 (blue). The degree distribution from the
optimization degree Hamiltonian Hop = >, |ki —qi|, by contrast, is noticeably
closer to the specified one, with sharper peaks of roughly equal heights at £ = 5

and 10.

same for all nodes (i.e. a g-regular graph) it is well known that Hyp would have created
an Erdos-Rényi graph with a Poissonian degree distribution, locally not unlike the peaks
in figure 2 [5]. Thus we call the peaks we see in figure 2 Poisson-like.

The well-documented success of the configuration model implies that the fluctuations
we see in P(k) may not be problematic in general, though in certain circumstances (we
see such a case later) a more faithful reproduction of the specified degree distribution may
be desired. This means that a graph Hamiltonian is needed that imposes a larger penalty
when k; deviates from ¢; than Hpp does. It is unclear how Hpp can be modified while
retaining the linear form. Instead, we introduce a nonlinear Hamiltonian

Hop(G) = Zﬁd|ki(G) - il (8)

ieN

which we call the optimization degree Hamiltonian, being reminiscent of Hamiltonians
used in certain optimization problems such as number partitioning [13]*. The P(k) that
results from Hop with § = 1 for simplicity (the penalty can be controlled via 4 when
necessary) is shown in figure 2 in red, which is indeed a more faithful reproduction of
P(q) in comparison with Hyp, showing sharper peaks at £ = 5 and 15 of equal heights
similar to P(q). The broadening of the peaks around the specified degrees from the
Hyp in comparison to Hop in figure 2 is persistent in cases of more heterogeneous (thus
less artificial) specified P(q), as seen in figure 3 where we compare Hyp and Hop for a
Poissonian P(q) and a double Gaussian

P(q) = a®(q; 1, 01) + (1 — a)®(g; pr2, 02), (9)

3 Note that the so-called ‘curved’ exponential random graph model is similar to our formalism in that the graph
Hamiltonians are nonlinear functions of network variables [9].
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Figure 3. The degree distributions generated via Hrp and Hop for heterogeneous
specified degree distribution. In (a) P(q) is a Poissonian (with (¢) = 10). In
(b)—(d) P(q) is a double Gaussian with peaks at ¢ = 5 and 10 with varying
relative heights (a € [0,1] for the peak at ¢ = 5, and 1 — « for the peak at
g = 10) and variances o1, o9 of the peaks. (b) (a,01,02) = (0.5,1.0,1.0).
This is the most similar to figure 2. (c¢) (o, 01,02) = (0.75,1.0,1.0) and (d)
(ov,01,09) = (0.5,1.0,5.0). Here, Hop again consistently reproduces P(g) more
faithfully.

where ®(q, j1,0) is a Gaussian of mean p and variance 2, and « € [0, 1] sets the relative
weights between the two Gaussian peaks. For the Poissonian case we set (q) = 10
(figure 3(a)), and for the double Gaussian we try three cases of varying weights and
variances (figures 3(b)—(d)). The behaviors of Hyp and Hop are consistent with what we
see from figure 2: in terms of the goodness of fit to P(q) (including the relative heights
at the peaks) Hop is superior to Hipt

3. Robustness of degree reproduction under perturbation: targeted clustering

Besides degree distribution, a network characteristic that has been widely studied is
clustering. Intuitively, a clustered network contains significantly more triadic closures

4 For the purposes of this paper we are showing some numerical examples. For more systematic studies one
could investigate various moments of the degree distributions from the two Hamiltonians, or a difference measure
between two distributions P and @ such as D(P, Q) = >, |P(k) — Q(k)|.

doi:10.1088/1742-5468,/2011 /08 /P0O800S 7
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(triangles) than expected in a random graph with the same number of edges. (A common
definition of the strength of clustering of a network is given using the so-called clustering
coefficient, which we present later.)

In exponential random graph literature, studies have been made on graph
Hamiltonians that incorporate the number of triangles 7" linearly, the simplest case being
the Strauss model with Hg(G) = OM + 71 [14]. The motivation for Hg is that by
controlling # and 7, one could hopefully generate a network with any desired value of M
and 7', i.e. a smooth, controllable transition between a non-clustered configuration (small
T) and a clustered one (large T'). Unfortunately, it has been shown that Hg does not
show such a behavior: depending on # and 7, the system undergoes a first-order phase
transition from a sparse ER-like phase with vanishing clustering to a nearly fully connected
phase [14, 15], while most real networks are neither. More recently, Foster et al performed
an extensive study of the Hamiltonian H(G) = 77 on an ensemble of networks of fixed
degree sequences (and thus a fixed number of edges), and found that as 7 is tuned, T
shows a series of jumps consisting of first-order phase transitions [16], each transition
indicating the formation of densely connected local cliques.

This pathology renders the linear Hamiltonian for modeling real clustered networks,
where the triangles are distributed over the network without such extreme ‘condensation’
of triangles. The lack of such an intermediate phase in Hg stems from the fact that the
addition of a single edge in an already densely connected part of the network can lead to a
disproportionately large increase in 7" and decrease in Hs(G), resulting in the condensed
phase being energetically favorable. Therefore, it is understood that a Hamiltonian or,
more generally, a mathematical formalism is necessary that explicitly discourages such
condensation [15, 17].

Before we find such a Hamiltonian in our context of exponential random graphs,
let us first review how clustering in networks is quantified. It is often done via the
clustering coefficient C. In wide use are three versions, one local (node level) and two
global (network-wide). On the individual node level, the local clustering coefficient is
defined as

C =l i ki <2 10

where t; is the number of triangles of which the node i is at a corner, and s(k;) = (k;)
is the number of pairs of neighbors of node ¢, also called two-stars centered on i. C}
is therefore the probability that two neighbors of node i are themselves neighbors. The
global measure of clustering is commonly given by two measures. One is the average of

C; which we write as C, defined as C = (C;) = Y., Ci/N, i.e. the average of the local
clustering coefficients. The other, which we call C, is defined as

~ 3T 3T
Dien s(hi) 32 (1/2)ki(k; — 1)
where T = £ 3", .\ t; is again the number of triangles in the network. Therefore this
is the probability that a randomly selected two-star is a part of a triangle (3 exists

in the numerator because one triangle contains three two-stars). Although C' and C

are not identical, C = C when C; = Cy for all 7. In terms of these quantities, the
aforementioned behavior of the Strauss Hamiltonian Hg = 0M + 71" can be summarized

doi:10.1088,/1742-5468,/2011 /08 /P08008 8
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Figure 4. The global clustering (5> of graph ensembles generated from the
linear (blue) and the optimization (red) degree Hamiltonians perturbed with the
targeted clustering Hamiltonian Ho = >,y [ti — Crarget5(Ki)|. (C) =~ Charget is
the result of the node-level local clustering coefficients being ~Clarget, regardless
of the degree distribution.

as the clustering coefficient (local or global) being cither C' (or C) ~ 0 (sparse ER-like
phase) or C' (or C') =~ 1 (condensed phase) or, in other words, ¢; ~ 0 or s(k;) for all i, while
in a network of intermediate clustering coefficient C, ¢; would be ~C's(k;). Taking a cue
from the latter and equation (8), we propose the following nonlinear targeted clustering
Hamiltonian:

Ho =Y fBelti = yis(k)l = Y Belts — vigki(ki = 1)), (12)

ieN ieN

where ~; is now the specified (i.e. targeted) clustering coefficient for node i. The difference
between H¢ and the model of Milo et al [18], where Hypo = |T—T"| and T” is the specified
number of triangles, is that Hg allows us to control local clustering. Similarly to Hop of
equation (8), Hc explicitly penalizes ¢; when it diverges from a prescribed value ~;s(k;).
In studying the effectiveness of H¢ in reproducing the specified local clustering, we would
also like to have the option of controlling the degrees {k;} simultaneously. We have already
discussed two Hamiltonians designed specifically for that purpose, Hyp and Hop. In the
remainder of this paper, therefore, we study the following two composite Hamiltonians:

H, = Hip+ Hc = Z[—l@ Ing; + Belt; — vis(ki)|] (13)
ieN
and
Hy = Hop + He :Z[ﬁdwﬁ'—% + Belts — yis(ki) ] (14)
ieEN

to find out whether either is capable of generating network ensembles exhibiting both the
specified degrees and local clustering.

A Monte Carlo simulation was performed for a network of size n = 500 and
(k) = 10. For simplicity, we again set G4 = f. = 1, P(q) = 410 (a regular graph),
and 7; = Clarget, @ universal value for all ¢, varied between 0 and 1. First, figure 4 shows

doi:10.1088,/1742-5468,/2011 /08 /P08008 9
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Figure 5. The equilibrium degree distributions P(k) generated from H; =
Hip + Hc (blue) and Hy = Hop + Hc (red) for various values of Ciarger. The
specified degree distribution P(q) = d4.10 is in gray. When Ciarger = 0, both
Hamiltonians generate their natural P(k)—a true Poissonian for Hip, and a
sharp peak for Hop. As Ciarget is tuned higher, however, P(k) peaks at a smaller
k for Hyp + Hc and even exhibits multiple peaks when Ci,pget is too large, while
it stays virtually unchanged for Hop + Hc up to Charger > 0.5, an unusually high
value in real networks.

the mean global clustering (C) from the simulation, which shows us that both H; and
H2<6’> >~ Charger generate networks with the specified clustering. This arises from the fact
that (C;) =~ Claget on the individual level as well (not shown). The difference between
the H, and H,, however, is most striking in the equilibrium P(k), shown in figure 5.
When Clarget = 0, perturbation H is insignificant since the expected clustering without
it is 0 anyway, and therefore P(k) is simply as expected—a true Poissonian for H;, and a
sharper peak at ¢ = 10 for Hj, similar to the ones we saw in figure 2. When Clapger 7 0,
on the other hand, the peak in P(k) under H; gradually shifts toward a smaller k while
high-degree nodes are created in order to compensate for the number of edges M which
is a constant. As Cliaget is tuned higher it resembles the specified distribution less and
less, and at Ciueer =~ 0.4 we even observe multiple peaks (at k£ = 5 and 15—the values for
which |t — Ciargers(k)| = 0, meaning the peaks will shift for a different Ciapger and thus are
not very meaningful). P(k) under Hs, in contrast, is robust, without noticeable change
up to Ciarget = 0.5, already an unusually high value for real-world networks, until it too
shows similar (but milder) behavior at a higher value of Ciager ~ 0.6 and up®.

Let us now discuss the implications of the findings in figures 4 and 5 on the topology
of networks generated from Hy = Hyp + Hc and Hy = Hyp + Hc. First of all, figure 4
tells us that, unlike the Strauss clustering perturbation 77°, Hc was able to discourage
an extreme condensation of triangles, resulting in (C') o~ Ciaget by way of C; o~ Ciarget
for both H; and H,. However, it was not enough to completely overcome the cooperative

® We performed similar simulations for the four heterogeneous P(q) shown in figure 3 and found similar results.
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tendency of triangles under Hyp. The telltale sign of this is the creation of high-degree
nodes. Figure 5 shows the creation of high-degree nodes in H;: now many triangles exist
between the high-degree nodes, forming a core of densely interconnected high-degree nodes
although C; =~ Ciager as specified. On the other hand, under Hy where P(k) is sharply
peaked at the specified degree ¢ = 10 such cores do not exist; with k; ~ ¢ and C; ~ Ciarget
for all ¢ as specified, Hy generates a network that truly has a uniform distribution of
triangles, lacking any unspecified, accidental local structures.

We check our claim via the following two quantities: the degree-degree correlation
Tdeg (the Pearson correlation between the degrees of adjacent nodes) and the mean corner
degree of the triangles in the network, shown in figures 6(a) and (b). First, the plot of (rgeg)
in figure 6(a) indicates that adjacent degrees in the network are highly correlated under
Hy, so that high-degree nodes are indeed connected with other high-degree nodes and vice
versa, while Hy shows no such effect. This leads naturally to what we see in figure 6(b):
under H;, the mean corner degree is significantly higher than (k) = ¢, unlike Hy where
it is practically equal to q. These observations are presented visually in figure 6(c) (an
actual snapshot of an equilibrium configuration of a network with n = 50, P(q) = 0,5,

and Clarget = 0.4; (C) are 0.35 £ 0.02 and 0.31 £ 0.02, respectively). As expected, for H;
(left) we clearly see that the ten highest-degree nodes (blue, average degree 9.7) form a
densely interconnected core (encircled in orange), with the ten lowest-degree nodes (yellow,
average degree 1.0) pushed to the periphery with low triangle participation rate. For Hj
(right), no significant difference between highest- and lowest-degree nodes exists, and the
triangles are distributed uniformly, expected of a maximally random configuration given
the degree and local clustering constraints.

4. Discussion and future directions

Here we have studied two forms of graph Hamiltonian in exponential random graph theory
that take node degrees and local clustering as specified input. The tendency of triangles to
coalesce in the Strauss model was shown to persist when the linear clustering perturbation
was replaced by an optimized clustering form, albeit in a milder fashion, rendering
the composite Hamiltonian unable to generate the specified degree distribution®. The
optimization degree Hamiltonian, on the other hand, was able to satisfy both, exhibiting
significant robustness under the same perturbation.

That the optimization Hamiltonian form was able to reproduce both the targeted
degree and clustering presents an appealing possibility from the viewpoint of network
modeling via exponential random graph theory: given a set of network variables ® =

{¢¢Jv = 1,...,1}, it may act as a practical computational method to generate a null
model of network data with actual values of the variables {¢,|v = 1,...,[} using the
Hamiltonian [16]

Pcd

6 The reverse case of Hop + 7T was also numerically studied with varying 7. As 7 is tuned to be more negative
(thus favoring triangles) there also occurs a sudden onset of the emergence of a densely connected cluster of
high-degree nodes, signifying a condensation of triangles similar to Hrp + 77". This demonstrates that to create
finite clustering degree and local clustering optimization are necessary.
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Figure 6. (a) The degree—degree correlation Tdeg under Hy = Hyp + H¢ and
Hy = Hop + He. Hjp generates positive degree correlation for any positive
Clarget, while Hy exhibits very little correlation up to Ctarget =~ 0.5. (b) The mean
corner degree of triangles contained in the networks in equilibrium. Under H;
most triangles exist between high-degree nodes, indicating the persistence of the
cooperative nature of triangles. (c) Equilibrium topologies of clustered networks
under H; (left) and Hj (right). H; generates a core of high-degree nodes that are
densely connected and share a large number of triangles (enclosed in the orange
oval). Hs, in contrast, maintains the specified degree distribution P(q) = 64,10
while the triangles are distributed uniformly, features expected of a maximally
random configuration given the degree and local clustering constraints.

thereby enabling the modeler to assess quickly the sufficiency of the particular set of
variables in characterizing the network. An interesting recent application of a related
framework was provided by Foster et al [19]: specifically, they generated networks

with specified global clustering coefficient C' or degree-degree correlation r using the
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optimization Hamiltonian and measured their effect on each other and the modular
structure of the network (although they kept the degree sequence fixed as the network
data). In doing so, they demonstrated the utility of the Hamiltonian of the form (15) in
creating network ensembles with desired characteristics. Naturally, more study must be
made on the properties of equation (15) in relation to various network variables—global
as well as local—in order to establish its general utility. In light of the fact that new,
complex measures of network properties are frequently devised and introduced, we hope
that the formalism will prove to be a useful tool for network scientists.
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