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Abstract
Agglomerative percolation (AP) on the Bethe lattice and the triangular cactus is
studied to establish the exact mean-field theory for AP. Using the self-consistent
simulation method based on the exact self-consistent equations, the order
parameter P∞ and the average cluster size S are measured. From the measured
P∞ and S, the critical exponents βk and γk for k = 2 and 3 are evaluated. Here,
βk and γk are the critical exponents for P∞ and S when the growth of clusters
spontaneously breaks the Zk symmetry of the k-partite graph. The obtained
values are β2 = 1.79(3), γ2 = 0.88(1), β3 = 1.35(5) and γ3 = 0.94(2).
By comparing these exponents with those for ordinary percolation (β∞ = 1
and γ∞ = 1), we also find β∞ < β3 < β2 and γ∞ > γ3 > γ2. These
results quantitatively verify the conjecture that the AP model belongs to a new
universality class if the Zk symmetry is broken spontaneously, and the new
universality class depends on k.

PACS numbers: 64.60.ah, 64.60.De, 05.70.Fh, 64.60.Bd

(Some figures may appear in colour only in the online journal)

1. Introduction

Percolation transition describes the emergence of large-scale connectivity [1]. It has been
extensively studied in various branches of science due to its wide range of applications to
many phenomena such as polymerization, resistor networks and epidemic spreading [1]. The
first theoretical model for percolation was random or ordinary percolation in which a vacant site
or a vacant bond of a background lattice is randomly chosen to be occupied. The percolation
transition in random percolation is normally known to be continuous [1]. Percolation has been
extensively studied during the last three or four decades to be considered as a mature branch
of sciences.

However, the anomalous physical properties of exotic percolation models recently
triggered some new studies. One kind of study [2] was on explosive percolation. Explosive
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percolation was first argued to show discontinuous transition on the complete graph [2, 3]. But
subsequent studies have shown that the transition of explosive percolation on the complete
graph (or the mean-field transition) is continuous [4–8].

Another kind of study was on agglomerative percolation (AP) [9–13]. In AP one cluster
is randomly selected instead of a bond or a site. Then the selected cluster merges all the
nearest-neighboring clusters to form a new cluster. Using analytical methods and numerical
simulations, APs on a one-dimensional ring [9], two-dimensional lattices [10], critical trees
[11] and complex networks [12] were studied. The phase transition in AP was shown to be
continuous. However, AP was proved to belong to a new universality class different from
that of the random percolation if the base structure is bipartite [13]. In AP on a bipartite
structure like a two-dimensional square lattice, the merging process spontaneously breaks the
Z2 symmetry at the transition threshold, which is the origin of the new universality class [13].
In contrast, the universality class of AP on a triangular lattice, which is not bipartite, was
shown to be the same as that of random percolation [13]. Through these studies, the AP on a
bipartite graph was shown to belong to a new universality class different from that of random
percolation on the same graph.

To understand the critical phenomena of a new model clearly and precisely, the exact
mean-field theory (MFT) for the model must be first understood. However, MFT for AP on a
bipartite graph was not clearly understood, yet. To obtain the MFT of AP, a generating function
approach to AP on the Erdös–Rényi (ER) random network was attempted [12]. This analytic
approach predicted the critical exponent γ as γ = 1/2 [12]. But from the numerical simulation
on the ER graph, γ = 0.88(10) was obtained, which is significantly larger than γ = 1/2.
Furthermore, the ER graph is not exactly bipartite. The numerical simulation study on the
exact bipartite random graph earned only the critical exponent ν and the fractal dimension D
of the giant cluster as ν = 4.7(2) and D = 0.567(6), which are close to those for AP on ER
network but differ by more than one standard deviation [13]. Therefore, at this stage, MFT for
AP on a bipartite graph is far from completion.

Recently, the complete graph has widely been used as a testbed for MFT [2, 4, 6, 7].
However, the complete graph is not bipartite and one growth step of AP on the graph makes
the entire graph a new single cluster. In contrast, the Bethe lattice (infinite homogeneous Cayley
tree) on which AP can be well defined is bipartite. Moreover, the Bethe lattice is physically a
very important substrate or medium on which MFTs for various physical models become exact
[14]. The analytic treatments of magnetic models [15], percolation [1, 14], localization [14]
and diffusion [16] on the Bethe lattice give important physical insights into the subsequent
developments of the corresponding research fields. Therefore, if AP on the Bethe lattice is
completely understood, one knows MFT for AP exactly.

One of the theoretical merits of the Bethe lattice is that one can set up exact self-
consistent equations on the lattice. Recently, we have developed an exact self-consistent
simulation method for the arbitrary percolation process on the Bethe lattice [8]. From the self-
consistent simulation method, we have shown that the Achlioptas-type explosive percolation
[2] undergoes continuous transition [8]. In this paper, the critical properties of AP on the Bethe
lattice are studied by the use of the developed self-consistent simulation. By the self-consistent
simulation, the order parameter P∞ and the average size S of finite clusters on the Bethe lattice
are directly measured. Therefore, the exponents β and γ for P∞ and S are also obtained directly
without using the conventional finite size scaling theory, and our work can indeed establish
the exact MFT of AP.

In addition, Lau et al suggested the modified AP model in which the growth of clusters
spontaneously breaks the Zk symmetry of a k-partite graph. From now on we call the modified
model APk [13]. So AP2 means the original AP in which the growth of clusters breaks the Z2
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Figure 1. Schematic diagram for the arbitrary percolation process on the Bethe lattice with z = 3.
The center part consists of a three-generation Cayley tree from O with edge sites denoted by ⊗.
Each edge site is connected to an infinite cluster (IC) with the probability A or to a finite cluster (FC)
of average size Sb with the probability 1−A. Thick lines mean occupied bonds and thin lines mean
vacant bonds. The cluster containing O will be an infinite cluster with probability 1 − (1 − A)2.

symmetry of a bipartite graph. Based on a simple argument, the transition of APk is conjectured
to belong to a new universality class depending on k [13]. However, the conjecture has never
been confirmed quantitatively, yet. Therefore, in this paper we also study the MFT of the AP3

model on the triangular cactus, which is an expanded structure of the Bethe lattice and exactly
tripartite [14, 17] (see section 4). Since the Bethe lattice has a tree structure, like a critical
tree [11], the Bethe lattice is k-partite (tripartite, four-partite, etc) as well as bipartite. So a
percolation process on the Bethe lattice (or on any tree structure) which breaks a particular Zk

symmetry belongs to a new universality class depending on k as AP2 on the Bethe lattice gives
the mean-field bipartite universality class. Since the MFT of AP3 is first studied quantitatively
by the use of AP3 on the triangular cactus, AP3 on the Bethe lattice is also studied to confirm
the result for AP3 on the triangular cactus. By the self-consistent simulations the mean-field
exponents β and γ for AP3, or β3 and γ3, are obtained.

Finally from the results for AP2 on the Bethe lattice and AP3 on the triangular cactus and
the Bethe lattice, relations among the critical exponents of APk’s are provided in the mean-field
level.

This paper is organized as follows. In section 2, the self-consistent simulation method on
the Bethe lattice is explained. The results for the critical phenomena of the ordinary AP or AP2

obtained from the self-consistent simulation are shown in section 3. AP3 on both the triangular
cactus and the Bethe lattice is defined and studied in section 4. Finally, we summarize our
results in section 5.

2. Self-consistent simulation

The Bethe lattice with the coordination number z is the infinite Cayley tree in which z identical
infinite branches of tree structures are connected to the center site O as schematically shown
in figure 1 [1, 14]. The essential difference of the Bethe lattice from the random infinite tree
is the symmetric structure of identical trees centering on O. Let us first set up self-consistent
equations for arbitrary percolation on the Bethe lattice [8]. To set up self-consistent equations
on the Bethe lattice, the equations must be considered by focusing on O because of the
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symmetric structure. First consider a part of the Bethe lattice (a finite Cayley tree) with m
generations from O, which has in total Nm = 1 + z(km − 1)/(k − 1) sites, where k ≡ z − 1. To
make a complete Bethe lattice, one should add an infinite branch to each of zkm−1 edge sites.

Now we first calculate the order parameter P∞(p) at a given fraction p of the occupied
bonds, which is defined as the probability that O is connected to infinity by occupied bonds.
Theoretically, P∞(p) depends on two physical variables as shown in figure 1. One is the
probability A that an edge site is connected to infinity through an infinite cluster on the branch
connected to the edge site. The other is the average size Sb of finite clusters on the branch
connected to the edge site. If A is given a priori, then one calculates the probability that
O belongs to an infinite cluster in a given configuration. For example, in the configuration
of figure 1, O belongs to an infinite cluster with probability (1 − (1 − A)2), because O is
connected to two edge sites through a finite cluster. Similarly, if O is connected to t edge sites
through a finite cluster within the m-generation tree, O is connected to infinity with probability
(1 − (1 − A)t ). Let us call a finite cluster on the m-generation tree which contains O and has
s sites and t edge sites an st-cluster on the m-generation tree. The existence probability of an
st-cluster on the m-generation tree generally depends on p, A and Sb as Pmst (p, A, Sb). Then
the order parameter, P∞m(p, A, Sb), which is obtained by using the Bethe lattice composed
of the m-generation tree and zkm−1 infinite branches is physically the same as the P∞, i.e.,
P∞ = P∞m(p, A, Sb). Thus,

P∞(p) = P∞m(p, A, Sb) ≡ 1 −
zkm−1∑
t=0

(1 − A)t
Nm∑
s=1

Pmst (p, A, Sb). (1)

Since (1) holds for arbitrary m, a self-consistent equation for P∞(p),

P∞(p) = P∞m(p, A, Sb) = P∞m′ (p, A, Sb), (2)

holds for any combination of {m, m′}.
One can also obtain a self-consistent equation for the average size, S(p), of the finite

clusters containing O from the Bethe lattice composed of the m-generation tree and zkm−1

infinite branches. In the configuration of figure 1, the cluster which contains O has nine sites
(s = 9) and two edge sites (t = 2) within the three-generation tree. If the cluster is finite, the
size of the cluster is 9 + 2Sb. Similarly, S(p) is written as

S(p) = Sm(p, A, Sb) ≡
∑

t,s(1 − A)tPmst (p, A, Sb)[s + tSb]

1 − P∞
, (3)

because a cluster with s sites and t edge sites within the m-generation tree becomes a finite
cluster with probability (1 − A)t . Here, 1 − P∞ = ∑zkm−1

t=0 (1 − A)t
∑Nm

s=1 Pmst (p, A, Sb). Then,
a self-consistent equation for S(p),

S(p) = Sm(p, A, Sb) = Sm′ (p, A, Sb), (4)

holds for any combination of {m, m′}. From equations (2) and (4), one can reproduce the
well-known self-consistent equations for the random (or ordinary) bond percolation on
the Bethe lattice [1]. For m′ = 1, P1st (p, A, Sb) for the random percolation is written
as P1st (p, A, Sb) = P1st (p) = (z

t

)
pt (1 − p)z−tδs,t+1. Similarly, for m = 2, P2st (p) =∑z

l=0

(z
l

)(kl
t

)
δ(l+t+1),s ps−1(1 − p)k(s−t)−s+2. By applying these exact formulas to (1) and (2),

one can derive a self-consistent equation for A on the Bethe lattice:

A = 1 − (1 − pA)k. (5)

Comparing (5) with the random bond percolation, one can readily obtain the conventional
self-consistent equation on the Bethe lattice as R = (1 − p + pR)k, with R ≡ 1 − A [1, 8, 14].
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In addition, from (3) and (4), one can easily derive the conventional mean-field results of Sb

for the random percolation as

Sb = kp(1 − A)

1 − kp + (k − 1)pA
(6)

and

S(p) = 1 + p − 2pA

1 − kp + (k − 1)pA
, (7)

where A is the root of (5) [1, 8, 14].
Any percolation process can be treated analytically by using (2) and (4), if the exact

mathematical form of Pmst (p, A, Sb) for the percolation is known. However, the exact form of
Pmst (p, A, Sb) for arbitrary percolation such as AP and explosive percolation is very difficult
to obtain, whereas the form for random percolation is well known [1]. Therefore, to study a
percolation process in which the exact form for Pmst (p, A, Sb) cannot be obtained, Pmst (p, A, Sb)

should be estimated numerically. One such numerical method is a simulation method, which
we called the self-consistent simulation [8]. One first measures the number, Nmst (p, A, Sb),
of st-clusters on the m-generation tree occurring in the simulation. Then, Pmst (p, A, Sb) for
a given percolation process is estimated by Pmst (p, A, Sb) = Nmst (p, A, Sb)/Ncluster, where
Ncluster = ∑

st Nmst (p, A, Sb).
In some percolation models, one cannot perform simulations without knowing A and Sb.

If A and Sb are not known a priori, the iteration of a simulation process is needed in the
self-consistent simulation. The iteration starts with guessed values for A(1) and S(1)

b . Then
the following simulation process is iterated. In the ith simulation process Pmst (p, A(i), S(i)

b ) is
estimated by simulations using the known values of A(i) and S(i)

b . Then A(i+1) and S(i+1)

b are
obtained by numerically solving the equations

zkm−1∑
t=0

(1 − A(i+1))t
Nm∑
s=1

Pmst
(
p, A(i), S(i)

b

) =
zkm′−1∑
t=0

(1 − A(i+1))t
Nm′∑
s=1

Pm′st
(
p, A(i), S(i)

b

)
. (8)

and∑
t,s

(1 − A(i+1))tPmst
(
p, A(i), S(i)

b

)[
s + tS(i+1)

b

]

=
∑
t,s

(1 − A(i+1))tPm′st
(
p, A(i), S(i)

b

)[
s + tS(i+1)

b

]
. (9)

Here (8) and (9) come from (1), (2), (3) and (4). Then from A(i+1) and S(i+1)

b , the next (i + 1)th
simulation process is carried out. This simulation process is repeated until A and Sb reach the
saturation values or until both equations A(i+1) = A(i) and S(i+1)

b = S(i)
b hold. By applying the

saturated values of A and Sb to (1) and (3), P∞ and S can be calculated at given p. In this
paper, Pmst (p, A(i), S(i)

b ) and other relevant quantities are estimated by averaging over at least
106 simulation runs.

In the self-consistent simulation, we should be careful to choose m′(<m) for a given m as
addressed in [8]. If m′ is too small, then the clusters within the m′-generation tree cannot convey
the physical properties of the corresponding percolation enough to give physically plausible
solutions for the self-consistent equations (2) and (4). If m′ is very close to m, P∞m(p, A, Sb)

is numerically not so much distinct from P∞m′ (p, A, Sb) and the self-consistent equations (2)
and (4) hardly give the physically right solution. From the simulations with various sets of
{m, m′}, it is confirmed that a suitable choice of m′ should be in the interval m/3 < m′ � m/2
as shown in figures 2, 3 and 5–8.
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(a) (b)

(c)

Figure 2. Order parameter P∞ for AP2 from the self-consistent simulation on the Bethe lattice
with z = 3 using the m-generation tree and m′-generation tree. (a) Plots of P∞ against p for
the combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�).
(b) Plots of P∞ against n for the same combinations as in (a). (c) Plots of P∞ against nc − n with
nc = 0.7223 for the combination {m = 20, m′ = 9}. The line denotes the relation P∞ � (nc −n)β2 ,
with nc = 0.7223 and β2 = 1.79.

3. AP2 model

In the ordinary AP or AP2 [10, 13], one cluster is randomly selected instead of a bond or a site
and the selected cluster merges all the nearest-neighboring clusters to form a new cluster. This
means that in each growth process multiple bonds can be occupied at the same time. Therefore,
the natural control parameter for AP2 is the number n of clusters per site instead of the fraction
p of occupied bonds [10, 13]. In a tree structure, like the m-generation Cayley tree, n linearly
depends on p as n = 1 − p + p/Nm. Thus, one can easily analyze the percolation transition
by use of n if the dependence on p is known. In this sense, the results of the self-consistent
simulation are thus analyzed by the use of n even though the results for both p and n are
displayed in figures 2 and 3.

The results of the self-consistent simulation for AP2 on the Bethe lattice with z = 3
using the m-generation tree and m′-generation tree are displayed in figures 2 and 3. The
combinations of {m, m′} used for the simulations are {m = 20, m′ = 8}, {m = 20, m′ = 9} and
{m = 20, m′ = 10}. As emphasized in section 2, the simulation results are nearly identical for
various m′(= 8, 9, 10) (see figures 2(a), (b) and 3(a), (b)).

To obtain the critical density nc and the order parameter exponent β2, P∞ for {m =
20, m′ = 9} in figure 2(c) is analyzed based on the equation

P∞ � (nc − n)β2 , (10)

which holds for the ordered phase or for n < nc near the critical point, i.e., n → n−
c . The

obtained nc and β2 are nc = 0.7223(1) and β2 = 1.79(3). We also obtain nearly the same
nc and β2 within the estimated error when P∞’s for m′ = 10 and m′ = 8 in figure 2(b) are
analyzed. For another consistent check the self-consistent simulation on the Bethe lattice with
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(a) (b)

(c)

Figure 3. Average size S of finite clusters for AP2 from the self-consistent simulation on the Bethe
lattice with z = 3 using the m-generation tree and m′-generation tree. (a) Plots of S against p for
the combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�).
(b) Plots of S against n for the same combinations as in (a). (c) Plots of S against |nc − n| for the
ordered phase (n < nc, ©) and disordered phase (n > nc, �) with nc = 0.7223 for the combination
{m = 20, m′ = 9}. The lines denote the relations S � |n − nc|−γ −

2 for n > nc and S � |n − nc|−γ +
2

for n < nc with γ −
2 = γ +

2 = 0.88 and nc = 0.7223.

z = 6 is carried out to obtain β2 = 1.79(3). These numerical results for β2 are close to the
previous estimate β2 = 1.78(8) on the ER graph [12], but our estimate has much smaller error.

From the data for the average size S of finite clusters and the equation

S �
{|n − nc|−γ −

2 if nc < n
|n − nc|−γ +

2 if nc > n
, (11)

we also estimate nc, γ −
2 and γ +

2 . S’s in figure 3(b) are analyzed to obtain nearly the same results
for various combinations of {m, m′} as in the analyses of P∞. For simplicity the analysis of
S for {m = 20, m′ = 9} is shown in figure 3(c). The nc(= 0.7223(1)) obtained is nearly the
same as that obtained from the data in figure 2(c). We also obtain γ2 = γ −

2 = γ +
2 = 0.88(1),

in which no asymmetry is found between the disordered phase (nc < n) and the ordered phase
nc > n. The result γ2 = 0.88(1) is also consistent with the previous estimate γ2 = 0.88(10)

on the ER graph. We also obtain γ2 = 0.88(3) from the simulation on the Bethe lattice with
z = 6. These results clearly show that the obtained values of β2 and γ2 for AP2 are significantly
different from those for the random percolation [1].

4. AP3 model

The triangular cactus was first introduced by Fisher and Essam [17] to investigate the effect of
loops [14] on percolation. As shown in figure 4(a), each site in the Bethe lattice is replaced with
a triangle of three sites to form the triangular cactus. Thus, the dimensionality of the triangular
cactus is infinite as the Bethe lattice. Moreover, the triangular cactus is exactly tripartite, not
bipartite, as shown in figure 4(b). Therefore, it is expected that AP2 on the triangular cactus

7
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(a)

(b)

OO

O O

(c)

Figure 4. (a) Formation of the triangular cactus from the Bethe lattice with z = 3. In the cactus,
each site of the Bethe lattice is replaced with a triangle of three sites. Each edge site which is
denoted by ‘X’ is connected to an infinite branch. (b) AP3 on the triangular cactus. The triangular
cactus is tripartite as shown in the figure. If a blue(B)-colored cluster indicated by an arrow is
selected as in the left figure, it agglomerates all R neighbors and becomes an R cluster by the rule,
R → G → B → R as in the right figure. (c) AP3 on the Bethe lattice. The cluster growth method
in AP3 on the Bethe lattice is the same as that explained in (b).

belongs to the universality class of the random percolation as AP2 on the two-dimensional
triangular lattice [10].

Recently, Lau et al suggested the APk model, which breaks the Zk symmetry of the k-
partite graph [13]. It was conjectured that the universality class of APk depends on k [13].
However, APk for k � 3 has never been quantitatively studied, yet. In this section, AP3 on the
triangular cactus is studied to obtain the MFT of AP3. The Bethe lattice can also be considered
tripartite, four-partite and so on, as well as bipartite. Thus, APk on the Bethe lattice belongs
to a unique universality class depending on k, because APk model breaks the Zk symmetry of
the Bethe lattice without breaking other symmetries. Thus, one can confirm the validity of the
MFT of AP3 by comparing the critical exponents of AP3 on the Bethe lattice to those of AP3

on the triangular cactus.
To make the AP3 model which breaks the Z3 symmetry of a tripartite graph such as the

triangular cactus, the cluster growth process in the AP3 model should be carefully defined
[13]. In the growth process, one cluster is randomly selected and the selected cluster merges
some of the nearest-neighboring clusters into a new cluster, instead of all neighboring clusters.

8
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(a) (b)

(c)

Figure 5. Order parameter P∞ for AP3 from the self-consistent simulation on the infinite triangular
cactus using the m-generation cactus and m′-generation cactus. (a) Plots of P∞ against p for the
combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�). (b) Plots
of P∞ against n for the same combinations in (a). (c) Plots of P∞ against nc − n with nc = 0.5681
for the combination {m = 20, m′ = 9}. The line denotes the relation P∞ � (nc − n)β3 , with
nc = 0.5681 and β3 = 1.35.

In a tripartite graph, initially, three colors are arranged such that no pair of nearest-neighbor
sites has the same color. Therefore, we can identify a cluster by colors such as red (R), green
(G) and blue (B). In AP3, a selected B cluster is defined to agglomerate only the neighboring
R clusters to become a larger R cluster as shown in figure 4(b). A G-cluster merges only
the neighboring B clusters and an R cluster merges only G clusters based on a cyclic rule,
R → G → B → R [13]. The rule R → B → G → R can also be used, but it cannot be
physically different from the model with the R → G → B → R rule. The cluster-merging
process of AP3 on the Bethe lattice is the same as that on the triangular cactus as shown in
figure 4(c).

For the MFT of AP3 the self-consistent simulation for AP3 on the infinite triangular cactus
is carried out. The self-consistent simulation is almost the same as that for AP2 on the Bethe
lattice. First consider the m-generation triangular cactus from O, which has Nm = 2m+2 − 3
sites. To make a complete infinite triangular cactus, one should add an infinite branch to each
of 2m+1 edge sites. Other details of the self-consistent simulation on the infinite triangular
cactus are exactly the same as those on the Bethe lattice.

We first explain the results of the self-consistent simulation for AP2 on the infinite
triangular cactus using the combination of {m = 20, m′ = 9}. From the data for P∞ and
S, nc, β and γ are estimated as nc = 0.6761(1), β = 1.01(2) and γ = 1.00(2). This result
supports the expectation in [13] that AP2 on a tripartite graph belongs to the random percolation
universality class with β = γ = 1.

In contrast, AP3 on a tripartite graph should belong to a new universality class. The results
of the self-consistent simulation for AP3 on the infinite triangular cactus using the m-generation
cactus and m′-generation cactus are displayed in figures 5 and 6. The combinations of {m, m′}
used for the simulations are also {m = 20, m′ = 8}, {m = 20, m′ = 9} and {m = 20, m′ = 10}.
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(a) (b)

(c)

Figure 6. Average size S of finite clusters for AP2 from the self-consistent simulation on the
triangular cactus using the m-generation cactus and m′-generation cactus. (a) Plots of S against p
for the combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�).
(b) Plots of S against n for the same combinations as in (a). (c) Plots of S against |nc − n| with
nc = 0.5681 for the combination {m = 20, m′ = 9}. The line denotes the relation S � |n − nc|−γ −

3

for n > nc with nc = 0.5681 and γ3 = 0.94.

In figures 5(a) and 6(a), the results of the self-consistent simulation are also displayed for p
as in figures 2(a) and 3(a). But the main analyses are done by the use of n as in section 3.
The simulation results for AP3 on the triangular cactus are also nearly identical for various
m′ (= 8, 9, 10) (see figures 5(a), (b) and 6(a) and 6(b)) as in section 3.

By using the same equations as (10) and (11), the data for the combination of
{m = 20, m′ = 9} in figures 5(c) and 6(c) are analyzed. From the analysis, the order parameter
exponent β3 and the susceptibility exponent γ3 of AP3 on the triangular cactus are obtained as
β3 = 1.35(5) and γ3 = 0.94(2) with nc = 0.5681(1). We also obtain nearly the same β3, γ3

and nc within the estimated error by analyzing the data for m′ = 10 and m′ = 8 in figures 5(b)
and 6(b).

The results of the simulations for AP3 on the Bethe lattice with z = 3 using the same
combinations {m = 20, m′ = 8}, {m = 20, m′ = 9} and {m = 20, m′ = 10} are displayed in
figures 7 and 8. The obtained exponents of AP3 on the Bethe lattice are the same as those of
AP3 on the triangular cactus as shown in figures 7(c) and 8(c). β3 and γ3 obtained from the
simulations on the triangular cactus and on the Bethe lattice are the first numerical results for
AP3.

β3 and γ3 satisfy the inequalities β∞ < β3 < β2 and γ∞ > γ3 > γ2, where β∞(=1) and
γ∞(=1) are the MFT exponents of the random percolation. The inequalities suggest that the
MFT exponents of APk approach to those of the random percolation as k increases.

5. Summary

Finding the exact MFT is the first step to understand the various physical properties of a
new model. AP was suggested as a natural extension of the random percolation model. Some
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(a) (b)

(c)

Figure 7. Order parameter P∞ for AP3 from the self-consistent simulation on the Bethe lattice
with z = 3 using the m-generation tree and m′-generation tree. (a) Plots of P∞ against p for
the combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�).
(b) Plots of P∞ against n for the same combinations as in (a). (c) Plots of P∞ against nc − n with
nc = 0.6414 for the combination {m = 20, m′ = 9}. The line denotes the relation P∞ � (nc −n)β3 ,
with nc = 0.6414 and β3 = 1.35.

(a) (b)

(c)

Figure 8. Average size S of finite clusters for AP2 from the self-consistent simulation on the Bethe
lattice with z = 3 using the m-generation tree and m′-generation tree. (a) Plots of S against p for the
combinations {m = 20, m′ = 8} (�), {m = 20, m′ = 9} (�) and {m = 20, m′ = 10} (�). (b) Plots
of S against n for the same combinations in (a). (c) Plots of S against |nc − n| with nc = 0.6414
for the combination {m = 20, m′ = 9}. The line denotes the relation S � |n − nc|−γ −

3 for n > nc

with nc = 0.6414 and γ3 = 0.94.
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Table 1. Critical thresholds and critical exponents for the AP2 and AP3 models on the Bethe lattice
and the infinite triangular cactus.

Model Graph nc (or pc) β γ

AP2 Bethe lattice (z = 3) nc = 0.7221(1) 1.79(3) 0.88(1)
AP2 Triangular cactus nc = 0.6761(1) 1.01(1) 1.00(2)
AP3 Bethe lattice (z = 3) nc = 0.6414(1) 1.35(5) 0.94(2)
AP3 Triangular cactus nc = 0.5681(1) 1.35(5) 0.94(2)
Random percolation Bethe lattice (z = 3) pc = 1/2 1 1

numerical studies for AP2 were performed on lower-dimensional lattices and random graphs
[9–13]. Based on those numerical studies, it was conjectured that APk belongs to a new
universality class depending on k if the cluster growth breaks the Zk symmetry of a k-partite
graph. However, the mean-field approach based on the evolutionary dynamics of clusters
did not agree with the numerical simulations. This strongly indicates that AP is not fully
understood even at the mean-field level [12].

Therefore, in order to provide the exact MFT, we apply the self-consistent simulation
method [8] to AP2 on the Bethe lattice and AP3 on the triangular cactus and the Bethe lattice.
From the direct and precise measurement of P∞ and S through the self-consistent simulation,
we obtain β2 = 1.79(3) and γ2 = 0.88(1) on the Bethe lattice when the Z2 symmetry
is broken spontaneously at the transition threshold. Similarly, we obtain β3 = 1.35(5) and
γ3 = 0.94(2) both on the triangular cactus and on the Bethe lattice if the Z3 symmetry is broken
spontaneously. In contrast, the AP2 model on the triangular cactus gives β = 1.01(2) and
γ = 1.00(2). This result shows that AP2 on a tripartite graph belongs to the same universality
class as that of the random percolation. These results are summarized in table 1.

Therefore, the results for AP3 on the triangular cactus and the Bethe lattice provide
the exact MFT, which verifies the Lau et al conjecture [13] quantitatively. In addition, by
comparing the obtained critical exponents with those of the random percolation, we also find
the inequalities β∞ < β3 < β2 and γ∞ > γ3 > γ2. These inequalities also quantitatively
verify the conjecture that the universality class of APk depends on k [13].
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