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Conductivity of Stick Percolation Clusters with Anisotropic Alignments
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The conductivity of random resistor networks composed from percolating clusters of two-
dimensional (2D) stick systems with anisotropic alignments is analyzed by using a finite-size scaling
analysis for comparison to the conductivity of single-walled carbon-nanotube bundle film networks.
For the conductivity analysis, we first calculate the critical properties of the percolation transition
of 2D stick systems with anisotropic alignments. Even though the percolation transition stick den-
sity increases rapidly as the anisotropy is enhanced, the conductivity and the critical properties
hardly vary. The resultant conductivity exponent of the stick networks at the percolation threshold
is nearly the same as that of the lattice critical percolation clusters regardless of the anisotropy and
the resistance ratio r = Rjct/RNT , where Rjct is the stick-to-stick junction resistance and RNT is
the resistance of a stick.
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I. INTRODUCTION

Single-walled carbon-nanotubes (SWNTs) with large
aspect ratios have drawn many studies because of their
important role in designing nanoscale devices [1–3]. Re-
cently the electrical conductivity of SWNT networks has
been studied experimentally [4,5] and theoretically [5–8].
Especially Du et al. [5] studied the conductivity depen-
dence of nanotube/polymer composite film networks on
the alignment and the concentration of such nanotubes,
and found a strong dependence of the percolation prop-
erties on the anisotropy of the alignments. They still ar-
gued that the conductivity critical exponent depends on
the anisotropy. Hecht et al. [4] experimentally studied
the dependence of the conductivity σ of the SWNT film
networks on the SWNT bundle length � as

σ ∼ �1.46. (1)

This power-law dependence of the conductivity on � was
qualitatively explained based on the fact that the re-
sistance along the SWNT bundle itself (RNT ) is much
smaller than the resistance due to tube-to-tube junction
(Rjct) or Rjct � RNT [4].

A good theoretical model for SWNT film networks is
a two-dimensional (2D) stick system, which is one of
the well-known continuum percolation models [4, 5, 7–
11]. Classical works on the 2D stick percolation system
[9] showed that the universality of the percolation tran-
sition of isotropic stick systems is the same as that of
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the lattice percolation transition. For this, Balberg et al.
[9] have calculated the critical exponents of the perco-
lation transition in the infinite-size or thermodynamic
limit. They put N sticks with the length � in a unit
square [9]. By using the fact that the critical percolation
thresholds Nc or �c satisfy the relation �2Nc = �2cN , they
estimated the critical exponents from the relations

Np/N � (N/Nc − 1)β = (�2/�2c − 1)β , (2)

S(p) � (N/Nc − 1)γ = (�2/�2c − 1)γ , (3)
σ � (N/Nc − 1)t = (�2/�2c − 1)t, (4)

where Np is the number of the sticks in the percolat-
ing cluster, S(p) is the average size of finite clusters
and σ is the conductivity of the resistor networks com-
posed from the percolating cluster. Because (N/Nc − 1)
or (�2/�2c − 1) directly corresponds to (p − pc)/p for a
lattice percolation system [12], Balberg et al. [9] ob-
tained the critical exponents as β = 0.14, γ = 2.3, and
t = 1.24 without the modern finite-size scaling analysis
[12–14]. Balberg et al. [9] also studied the dependence
of Nc on the alignment of the sticks. However, for com-
parison of the experimentally-found result (1) to σ for
stick percolation networks, one needs a finite-size scaling
analysis, because σ in a finite-size system should satisfy
the relation σ ∼ �t/ν with the correlation length expo-
nent ν. In this sense, recently, finite-size scaling analyses
were performed for stick percolation systems [7,8]. In the
finite-size scaling analysis [7], the percolation transition
of the isotropic stick system was shown to belong to the
same universality class as the lattice percolation transi-
tion. Furthermore, the finite-size scaling analysis [8] ar-
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gued that the conductivity exponent t or t/ν for such
stick critical percolation clusters does not depend on the
ratio r = Rjct/RNT and obtained t = 1.28(t/ν = 0.96)
regardless of the value r. If the finite-size scaling analysis
is right, the simple 2D stick percolation system cannot
explain the experimental result (1) with t/ν � 1.46. The
discrepancy might come from the anisotropic effects of
the stick alignment. The dependence of the percolation
threshold and the conductivity on the anisotropy of the
stick alignments was studied by Du et al. [5] for compar-
ison to the experimental result, but the dependence of t
or t/ν on the anisotropy is not quantitatively and clearly
understood.

In this paper we use a careful finite-size analysis of
the 2D stick percolation system to study the effects of
the anisotropy of the stick alignments and the ratio
r = Rjct/RNT on the critical properties and the con-
ductivity of 2D stick percolation systems. As we shall
see, the critical properties and t/ν do not depend on
the anisotropy, and the difference of t/ν in the 2D stick
systems from the experimental value in Eq. (1) should
originate from some other physical factors.

This paper is organized as follows. In Sec. II, the 2D
stick model is explained, with careful definitions of var-
ious quantities and relations. Section III, a finite-size
scaling analysis for the critical properties of the perco-
lation transition is carried out considering the effects of
anisotropic alignments. In Sec. IV, σ of the random resis-
tor networks composed from the spanning clusters with
a finite value of r and the effects of anisotropic align-
ments are analyzed. In the final section, the summary
and relevant discussions are presented.

II. TWO-DIMENSIONAL STICK
PERCOLATION SYSTEM

One can think of two kinds of equivalent models for
the 2D stick percolation system. The first kind of model,
which we call model A, uses N sticks of lengths � (< 1)
distributed randomly on a 2D unit square. In the other
kind of model, model B, N sticks of the unit length (� =
1) are randomly distributed on a square with a side of
length L. Model A can be exactly mapped with a one-
to-one correspondence to the model B by multiplying
both the stick length and the length of the side in model
A by �−1(= L). Therefore, the physical properties of
the percolation transition using model A are the same
as those of model B. For convenience, we use model B
from now on.

A typical configuration in model B is shown in Fig. 1.
The position and the orientation of a stick i are iden-
tified by the coordinate of the center, (xi, yi), and the
orientation angle, θi, with respect to the y-axis. If
sticks are placed randomly with −π/2 ≤ θi ≤ π/2, then
the configuration of sticks is isotropic. If the condition
−θcut ≤ θi ≤ θcut with θcut < π/2 is imposed, then

Fig. 1. (Color online) Typical configuration in model B.
The length of a side of the square is L (= �−1). Clusters
of sticks are shown. Because a spanning cluster exists, the
configuration is one with a density of sticks larger than the
percolation threshold density mc.

the configuration should have anisotropy. In the limit
θcut → 0, the configuration approaches that in which all
the sticks are parallel to one another. If a pair of sticks
cross each other, the pair belongs to the same cluster as
shown in Fig. 1. The size of a cluster is defined by the
number of sticks that belong to the cluster. If the density
of sticks or m(= N/L2) increases, a cluster that connects
the top side of y = L to the bottom side of y = 0 appears.
The connecting cluster is called a spanning cluster or a
percolation cluster. The percolation transition threshold
density mc is the density at which at least one perco-
lating cluster exists if m > mc(= Nc/L2) in the limit
L → ∞.

III. FINITE-SIZE SCALING ANALYSIS OF
THE PERCOLATION TRANSITION

WITH ANISOTROPY

As introduced, the finite-size scaling analysis
(FSSA) for the percolation transition with θcut = π or
for the isotropic alignments was carried out to confirm
that the transition of 2D isotropic stick systems belongs
to the same universality class as the lattice percolation
transition [7], as Balberg et al. [9] showed by using an
infinite-size analysis. In this section, we want to check
that the transition of anisotropic stick systems belongs
to the same universality class as the lattice percolation
transition by use of a FSSA. Even though several works
have studied the dependence of the transition threshold
density mc on θcut [5,10], the dependence of the univer-
sality of the transition on θcut has barely been investi-
gated. Because the dependence of the correlation length
exponent ν on θcut is needed to estimate the dependence
of the conductivity exponent t on θcut in the next sec-
tion, calculating the dependence of the critical exponents
on θcut by using the FSSA is important. For the FSSA
of the stick model, the simulation data are obtained by
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Fig. 2. Average size S of finite clusters against the density m for various L with (a) θcut = π/4 and (b) θcut = π/9. (c) The
line with the value of 1/ν is the fit of mmax(L) to Eq. (6) for θcut = π/4. (d) The same fit as (c) for θcut = π/9. (e) The line
with the value of γ/ν is the fit of Smax to Eq. (7) for θcut = π/4. (f) The same fit as (e) for θcut = π/9. (g) The data collapse
to the scaling function in Eq. (5) by use of the exponents obtained in (c) and (e) for θcut = π/4. (h) The same collapse as (g)
by use of the exponents in (d) and (f) for θcut = π/9.

averaging over 105 ∼ 106 randomly-generated configura-
tions of model B for each set of m and L. Figures 2(a)
and (b) show the data obtained for the average size S of
finite clusters, which depends on the system size L and
the stick density m. The finite-size scaling ansatz of S
for m � mc or the critical region [12] can be written as

S(m,L) = Lγ/νf((m − mc)L1/ν), (5)

where mc is the critical density of sticks, which depends
on θcut; i.e., mc = mc(θcut). The scaling function f
shows the scaling behavior of f(x) ∼ x−γ for x � 1
and f(x) = const. for x � 1. Furthermore the maximal
value Smax(L) of S and the density mmax(L) at which
S becomes Smax have the following properties:

mmax(L) = mc + aL−1/ν (6)

and

Smax(L) ∼ Lγ/ν . (7)

From Eq. (7) and the data as in Figs. 2(a) and (b),
we estimate mc(θcut) and the correlation length expo-
nent ν(θcut). The fittings of the relation (7) to the data
for θcut = π/4 and θcut = π/9 are shown in Figs.
2(c) and (d), respectively. From such fittings, mc(θcut)
are estimated as in Fig. 3. We reconfirm the relation
mc(π/2)�2 = mc(π/2) = 5.637(2) with � = 1 for the
isotropic case [7, 15], as shown in Fig. 3. The critical
density mc does not vary much for the interval 5π/ 18
< θcut ≤ π/2, but rapidly changes for the interval θcut <
5π/18 as mc � θ−0.9

cut . This behavior of mc(θcut) based
on the FSSA is qualitatively very similar to that from

Fig. 3. Threshold density mc(θcut) against θcut. The solid
line denotes the relation mc ∼ θ−0.9

cut . The dashed line corre-
sponds to mc = 5.637

.

an experimental analysis [5] and that from the infinite-
size analysis for the critical density [10]. In contrast to
the rapid growth of mc as θcut decreases, the exponent
ν does not vary substantially as 1/ν = 0.73 ∼ 0.76 or
ν = 1.32 ∼ 1.37 over the entire interval 0 < θcut < π/2
(see Figs. 2(c) and (d)). These ν values are nearly the
same as ν = 4/3 for the lattice percolation [12]. This
result physically means that ν hardly depends on θcut.

Based on Eq. (7) and the data in Figs. 2(a) and
(b), we estimate γ/ν as shown in Figs. 2(e) and (f).
Neither does the exponent γ/ν vary substantially as
γ/ν = 1.72 ∼ 1.73 or γ = 2.30 ∼ 2.35 over the entire
interval 0 < θcut < π/2. This value of γ is also very
close to γ = 43/18 for the lattice percolation [12]. The
result for γ also physically means that γ hardly depends
on θcut. Figures 2(g) and (h) show that S, with the ob-
tained exponents, satisfies the scaling relation in Eq. (5)
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Fig. 4. (a) P against m for various L when θcut = π/4.
(b) The data in (a) collapse to the scaling function in Eq. (8).

Fig. 5. (Color online) Composition of the random resistor
network from a configuration of sticks. Step I: Identification
of the spanning cluster. Step II: Construction of the backbone
of the cluster. Step III: Resistance as Rij = �ij is assigned to
the part of the stick between the junctions i and j. Junction
resistance Rjct is assigned to each junction.

regardless of θcut.
Figure 4(a) shows the order parameter P of the per-

colation transition. The order parameter P (m,L) is de-

Fig. 6. Conductivity σ against L(= �−1) for various ratios
r = Rjct/RNT for (a) θcut = π/2 and (b) θcut = π/9. Each
line is the fit of σ to Eq. (9) with a common exponent t/ν �
0.96.

fined as P (m,L) = Np/N , where Np is the number of
sticks in the spanning cluster. P (m,L) for m � mc or
the critical region [12] satisfies the FSS ansatz

P (m,L) = L−β/νg((m − mc)L1/ν), (8)

as shown in Fig. 4(b). Here, the scaling function g(x)
scales as g(x) ∼ xβ for x � 1 and as g(x) = const. for
x � 1. In Fig. 4(b), we display the scaling collapse of
the obtained P to Eq. (8). For the collapse, we use ν
and mc(π/4) in Fig. 2(g) and β = 5/36 for the lattice
percolation transition. Even though only P (m,L) for
θcut = π/4 is displayed in Fig. 4 for the sake of simplicity,
we confirm that P (m,L) satisfies nearly the same scaling
relation (8), regardless of θcut, with mc(θcut) in Fig. 3.
This result also supports the fact that the percolation
transitions belong to the same universality class as that
of the lattice percolation transition regardless of θcut.
The FSSA of the stick percolation systems concludes that
the universality class of the percolation transition never
changes as the θcut or the anisotropy of stick alignments
varies, even though mc grows rapidly as θcut decreases
in the interval θcut < 5π/18.

IV. CONDUCTIVITY OF RANDOM
RESISTOR PERCOLATION NETWORKS

Based on the results in Sec. III, we now analyze the
conductivity of random resistor networks composed from
the spanning cluster at the percolation threshold density
mc. For m > mc or the stick density m above the per-
colation threshold density mc, the spanning cluster or
the largest cluster is topologically nearly equal to the
homogeneous two-dimensional structure. Therefore, the
conductivity σ of the resistor network for m > mc never
satisfies a nontrivial power-law behavior like Eq. (1). For
m < mc, a spanning cluster does not exist, and the stick
network never forms a conducting medium. Thus, a non-
trivial power-law like Eq. (1) only occurs on stick net-
works for m � mc. This is the physical reason we are in-
terested in the conductivity of random resistor networks
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composed from the spanning cluster at the percolation
threshold density mc [4,12].

The procedure to compose a random resistor net-
work from a percolation cluster is schematically shown in
Fig. 5. To compose the resistor network from the span-
ning cluster, we took the following three steps: The first
step (Step I) is to identify the spanning cluster that con-
nects the top side of y = L to the bottom side of y = 0
(See step I in Fig. 5). Since currents only flow through
the backbone of the cluster as in the lattice percolation
[12], the backbone of the cluster must be identified. The
next step (Step II) is to make the backbone by cutting
out the dangling sticks or dangling parts of sticks through
which no currents flow (See step II in Fig. 5). The third
step (Step III) is to assign resistances to the sticks (nan-
otubes) and to the junctions as in step III of Fig. 5. Here,
the stick resistance Rij between the junctions i and j is
set to a real length �ij of the part of the stick between
the junctions i and j. Because the stick length � is set
as a unit in model B and the resistance RNT of a whole
stick is one, Rij(= �ij) ≤ RNT (= 1). Rjct is given to
each junction.

Balberg et al. [9] originally studied the conductivity
of the resistor networks for the isotropic alignments of
sticks only with Rjct. As explained in Sec. I, a recent
study [8] argued that the conductivity exponent of the
networks never depends on the ratio r = Rjct/RNT for
the isotropic alignments. In contrast a recent experimen-
tal study [4] found a nontrivial behavior as Eq. (1), where
the ratio r is experimentally in the interval 7 < r < 70
[4]. Here, we study the dependence of the conductivity
of the networks on the anisotropic alignments or θcut and
on the ratio r.

We use conventional methods based on the Kirchhoff’s
circuit rule to evaluate the conductivity of the networks
[9, 12]. The conductivity σ of the networks at mc for
each set of L, θcut, and r is obtained by averaging over
105 ∼ 106 stick configurations. The numerical results
for σ are shown in Fig. 6. The conductivity σ at the
percolation threshold on a 2D lattice for r = 0 is well
known to satisfy

σ ∼ L−t/ν , (9)

with t/ν � 0.970 [12,16]. As shown in Fig. 6, the conduc-
tivity of isotropic stick networks for r = 0 satisfies Eq. (9)
very well with t/ν = 0.96(1), which is very close to the
value for the lattice percolation and is nearly identical to
the recent result [8] for the stick percolation system. This
means that a dynamical property like the conductivity
as well as the critical properties of the transition of the
stick percolation system, as shown in Sec. III, is the same
as that of the lattice percolation system. Furthermore,
the result t/ν = 0.96(1) for r = 0 is also reproduced for
arbitrary θcut, as shown in Fig. 6. This also means that
the scaling relation (9) for σ should be independent of
θcut or anisotropic alignments as the scaling relations for
the critical properties in Sec. III.

The conductivities for cases with finite r (= 1) and ar-
bitrary θcut satisfy Eq. (9) very well with t/ν = 0.96(1),
as shown in in Fig. 6. The conductivities for cases with
r = ∞ (RNT = 0 and Rjct = 1) and arbitrary θcut also
satisfy Eq. (9) very well with t/ν = 0.96(1), as for the
isotropic case with r = ∞ (RNT = 0 and Rjct = 1) [12,
16]. This result means that the conductivity exponent
t/ν hardly changes as θcut changes. σ also satisfies the
FSSA, like S and P :

σ(m,L) = L−t/νh((m − mc)L1/ν), (10)

where the scaling function h(x) scales as h(x) ∼ x−t

for x � 1 and h(x) = const. for x � 1. Thus, in the
infinite-size limit or L → ∞, σ in the critical region or
|m − mc| � 1 satisfies the relation

σ ∼ (m − mc)−t. (11)

The conductivity exponent t for the infinite-size analysis,
as in Eq. (4), satisfies t = 1.27, and t never varies as r
varies from 0 to ∞.

The result for the conductivity analysis of the 2D per-
colation system with an anisotropy of the stick align-
ments cannot explain the experimentally-measured FSS
behavior [4] with a experimentally given resistance ratio
r = Rjct/RNT . The discrepancy might come from two
physical reasons. One is that the 2D stick percolation sys-
tem is physically too simple to be the exact theoretical
model system for real SWNT film networks. The other is
the data to calculate the experimentally measured FSS
behavior [4] have errors that are too large to get Eq. (1).
The data in Ref. 4 actually are too scattered to exclude
the result in Fig. 6.

V. SUMMARY AND DISCUSSION

By using a FSSA, we analyze the critical proper-
ties of percolation transitions in 2D stick systems with
anisotropic alignments. The percolation threshold den-
sity mc changes rapidly as θcut decreases in the interval
θcut < 5π/18 as mc ∼ θ−0.9

cut . From the practical point of
view, understanding the behavior of mc(θcut) itself be-
comes very crucial when we need to design a nanoscale
device with minimum nanotube concentration [17]. In
contrast, the critical exponents β, γ, and ν barely change
as θcut changes and are nearly the same as those for
the lattice percolation transition. This result physically
means that the universality of the percolation transition
of 2D stick systems is the same as that of the lattice
transition regardless of a rapid change of mc(θcut).

For the comparison of the experimental result on the
conductivity of networks of SWNT bundles, the conduc-
tivity of the random resistor networks composed from
percolation clusters of stick systems near the percola-
tion transition is calculated. As shown in Fig. 6, the re-
sult for the conductivity is nearly independent of the
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anisotropic stick alignment or θcut and the resistance ra-
tio r = Rjct/RNT , even though the percolation thresh-
old density mc rapidly changes for small θcut. This re-
sult physically means either that the percolation model
of the 2D stick system is physically too simple to be
the exact theoretical model system for networks of the
SWNT film bundles [4] or that the data to calculate the
experimentally-measured FSS behavior [4] have errors
that are too large to exclude the result in Fig. 6.

In Du et al.’s work [5], the dependences of the conduc-
tivity and the percolation properties of nanotube/poly-
mer composites film networks on the anisotropic align-
ment and the concentration of nanotubes were studied
by using both experiments and simulation methods sim-
ilar to ours. They argued that both the critical proper-
ties, like P in Fig. 4 and the conductivity of the networks
strongly depend on θcut. But in the simulation the study
was not based on a careful FSSA. The naive result of such
strong dependences on θcut might come from the strong
dependence of the percolation threshold mc on θcut. As
shown in Figs. 2, 4, and 6, a careful FSSA of the sim-
ulation data concludes that the scalings of the critical
properties and the conductivities do not change as θcut

varies.
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