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Modified Penna Bit-string Network Evolution Model for Scale-free Networks
with Assortative Mixing
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Motivated by biological aging dynamics, we introduce a network evolution model for social in-
teraction networks. In order to study the effect of social interactions originating from biologi-
cal and sociological reasons on the topological properties of networks, we introduce the activity-
dependent rewiring process. From the numerical simulations, we show that the degree distribution
of the obtained networks follows a power-law distribution with an exponentially decaying tail,
P (k) ∼ (k + c)−γ exp(−k/k0). The obtained value of γ is in the range 2 < γ < 3, which is con-
sistent with the values for real social networks. Moreover, we also show that the degree-degree
correlation of the network is positive, which is a characteristic of social interaction networks. The
possible applications of our model to real systems are also discussed.
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I. INTRODUCTION

During the last decade, there has been an explosion in
studies on the structural and the dynamical properties
of complex networks due to a wide range of discoveries
in real systems [1]. The examples range from physical
and technological systems [2,3] to biological [4] and so-
cial [5] systems. Numerous studies have revealed that
those networks share several common topological prop-
erties, such as small-world phenomena [6]. An interesting
finding was that complex weblike structures are divided
into two different classes based on their degree distribu-
tion. The degree distribution, P (k), is defined as the
probability to find a node of degree k and is the sim-
plest measure for the topological property of networks.
Networks whose degree distribution satisfies a power-law
P (k) ∼ k−γ are called scale-free networks (SFNs). Ex-
amples of SFNs include the world wide web (WWW)
[7], protein-interaction networks (PIN) [4], and social in-
teraction networks [8]. Since the discovery of SFNs in
real networks, many studies have tried to uncover the
underlying mechanism that causes the power-law degree
distribution [9]. One important mechanism that is be-
lieved to produce a SFN is the preferential attachment
[10]. On the other hand, when the evolution of the net-
work is completely random, the degree distribution is
known to follow a Poisson distribution [11]. Thus, a net-
work whose degree distribution is Poissonian is called a
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random network (RN). Examples of RNs are power-grid
networks and highway networks [1]. The origin of such
a difference in P (k) is known to be closely related to the
physical properties of the networks, such as tolerance
against attack [1,9].

Based on degree-degree correlations, networks can be
divided into two groups [12]. When the degree-degree
correlation is positive, the network is assortative while
it is disassortative if the correlation is negative. In gen-
eral, disassortative networks include technological net-
works such as the WWW, the Internet, and biological
networks, such as PINs [1]. On the other hand, social
interaction networks are well known examples of assor-
tative networks [12]. The degree-degree correlation also
affects the topological properties [13] and various dynam-
ical properties on networks [14]. Thus, an understand-
ing of the underlying mechanisms that affect the degree-
degree correlation and the degree distribution during the
evolution of the network is important to enlarge the hori-
zon of knowledge on complex networks.

Recently, Li and Maini investigated the topological
properties of complex network generated by using a
modified Penna bit-string model [15]. The Penna bit-
string model was originally introduced for biological ag-
ing based on Darwinian evolution with mutations [16,17].
Due to its simplicity and predictability for well-known
phenomena such as Gompertz law [18, 19], the Penna
model has been widely used in the population dynamics
in biological systems with aging. In Ref. 15, Li and Maini
modified the Vurhulst factor to control the birth of indi-
viduals in the population and introduced activity-based
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preferential attachment of offspring to incorporate the
social interaction during the evolution of networks. The
results show that such biologically originating interaction
can produce a network with assortative mixing. How-
ever, a scale-free degree distribution was not obtained,
even though the degree distribution became fatter than
the Poison distribution [15]. Therefore, in this paper, we
introduce a social interaction based on sociological and
biological reasons and show that the resultant network
has a scale-free degree distribution with assortative mix-
ing. We will also discuss some possible applications of
the studied models to real systems.

This paper is organized as follows: In Sec. II, we define
two models for a systematic study of social interactions.
The simulation results are given in Sec. III. In Sec. IV,
a summary and discussion are given.

II. MODELS

The asexual Penna model [17] uses a bit-string to rep-
resent a chronological genome for each individual (each
bit can be 0 or 1). Each position in the bit-string corre-
sponds to a unit time interval in the life of the individual,
for example, a year. Thus, the maximum age to which
an individual can live is thirty-two. A bit set to 1 rep-
resents a disease gene, and one set to 0 corresponds to a
healthy one. In the standard Penna model, the rules for
the individual to be alive are (i) the age of the individual
is less than or equals to 32, (ii) the number of accumu-
lated disease gene, m, is less than a threshold T , and
(iii) at each time step, the individual will stay alive with
the probability V (t) = 1 − N(t)/Nmax, where N(t) is
the number of individuals at time t and Nmax is the pa-
rameter characterizing the maximum population allowed
by the environment. The probability V (t) is called the
Verhulst factor. Li and Maini argued that the Verhulst
factor in the standard Penna model is too severe [15]
because the simulation results show that the population
size never reaches 0.3Nmax [20]. Based on this argument,
we discarded the Verhulst factor to allow the network to
grow and adopted the activity function in Ref. 15 for
the interaction. Moreover, by introducing the rewiring
process based on the sociological reasons, we will show
that the Penna bit-string network evolution model has a
scale-free degree distribution with assortative mixing.

The definition of model is as follows: Initialization–
We start from N0 individuals (1 � N0 � Nmax). Each
individual has a 32-bit string with value 0. In order to
locate the disease genes in the bit-string of individual i,
we randomly choose an integer Ti in the interval [1, T ].
Ti locations in the bit-string of i are selected at random,
and the value is changed to 1. Each individual is con-
nected to another one with probability φ = 0.1. At each
time step, all individuals in the population increase their
age by unity, which means that the corresponding gene
in the bit-string is expressed. If the expressed gene is a

disease gene, then mi is increased by 1. Death– At each
time step, all individuals whose ages reach 33 die. In
addition, the individuals with m ≥ T die. The dead in-
dividuals and links connected to them are removed from
the network. Birth– After the completion of the death
process, all individuals whose ages are larger than the
reproduction age R make B offspring, each of which in-
herits the genome and links of its parent. Each inherited
healthy gene mutates into a disease gene with probability
P . Interaction– In order to introduce the sociologically
and biologically originating interaction to the network
evolution, we use the activity of each individual defined
in Ref. 15. The activity of each individual strongly de-
pends on its age and health. The age-dependent activity
for individual i is defined as

Ai1 =
{

0 if 0 < ai < R
1 − exp [(ai − 32)/2] if R ≤ ai ≤ 32, (1)

where ai is the age of individual i, and the health-
dependent activity is defined as

Ai2 = exp
(
−mi

2

)
. (2)

Here, mi is the accumulated number of expressed disease
genes for individual i. Using Eqs. (1) and (2), we define
the activity Ai of individual i as

Ai = Ai1Ai2. (3)

The new-born offspring inherits the links of its parent
because in social systems, the new-born baby starts its
social interaction with the people who already have ac-
quaintance with its parents. However, some of the in-
herited links can be removed for various reasons. One
such reason might come from social activity; i.e., links
to individuals with small activity can be easily removed.
Thus, we first consider the effect of the removal of inher-
ited links due to the activity (model A). The removal
probability of each inherited link of individual i is defined
as

Ri =
A−1

i
ki∑

j=1

A−1
j

, (4)

where ki is the degree of individual i. The main dif-
ferences between the model in Ref. 15 and our model
are in the Verhulst factor and the removal probability of
inherited links.

In model B, we add new connections between un-
connected individuals. In social systems, making a new
connection is regarded as making a new friend. It is
natural to assume that if the difference in the age be-
tween the two individuals is small, then they have more
chance to become friends. The activity of each individ-
ual also affect the probability of making a new friendship
between unconnected individuals. Thus, we assume that
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Fig. 1. (Color online) (a) Plot of P (k) for N = 106. The
solid line represents the relation P (k) ∼ (k+c)−γ exp(−k/k0)
with γ = 2.27, c = 9, and k0 = 550. (b) Plot of the average
activity, 〈A(k)〉, against k.

the probability of making a new link between uncon-
nected individuals i and j is

Π(i, j) = AiAj exp (− |ai − aj |) . (5)

In the following simulations, we use N0 = 1000, T = 3,
R = 8, B = 1, and P = 0.1.

III. SIMULATION RESULTS

1. Model A

In Fig. 1(a), we show the P (k) distribution when
N(t) = 106 for model A. The obtained P (k) can be best
fitted by a power-law distribution with an exponential
cutoff [21]:

P (k) ∼ (k + c)−γ exp(−k/k0), (6)

with γ ≈ 2.27. This result can be easily understood
from the gene duplication-divergence model for a PIN
[22]. In the duplication-divergence model, the newborn
gene inherits its connections from its parent; then, due to
some mutation, its inherited links are removed with non-
zero probability. This process resembles the link-removal
process in our model during the social and the biologi-
cal interaction. In the duplication-divergence model, the
P (k) distribution is known to follow Eq. (6) [23].

The origin of the power-law in the degree distribution
is known to be closely related to the preferential attach-
ment of new links [9]. In model A, the probability to in-
herit the parent’s links is proportional to the activity of
the parent’s nearest neighbors. Thus, to investigate the
relationship between A and k, we measure the average
activity, 〈A(k)〉, for each k in Fig. 1(b). The data clearly
show that 〈A〉 increases as k increases. This implies that
the more active individual has more links. As a result,
the evolutionary dynamics of the network has a prefer-
ential attachment. This behavior of 〈A〉 can be qualita-
tively understood from the definition of the model. Since
the probability to keep the connection in inherited links
is proportional to A, the individual with large A has
more chance to be connected to the newborn offspring,
which causes an effective preferential attachment.

Fig. 2. Plot of 〈knn〉 against k.

Fig. 3. (Color online) Plot of activity P (k) with social
interaction. The solid line corresponds to P (k) ∼ (k +
c)−γ exp(−k/k0) with γ = 2.1, c = 37, and k0 = 170.

In Fig. 2, we measure the average degree of the near-
est neighbors of nodes of degree k, 〈knn(k)〉, to measure
the degree-degree correlation [24]. 〈knn〉 is defined as
〈knn〉 =

∑
k′ k′P (k′|k), where P (k′|k) is the conditional

probability that a node of degree k is connected to a
node of degree k′. Thus, if there is no degree-degree cor-
relation, then 〈knn〉 is independent of k. On the other
hand, when the network has assortative mixing (or pos-
itive degree correlation), 〈knn〉 increases as k increases.
The data in Fig. 2 clearly shows that 〈knn〉 increases as k
increases when k < 4000. For k > 4000, 〈knn〉 does not
seem to depend on k. This indicates that the degree-
degree correlation becomes positive. We also measure
the Pearson coefficient defined as

r =

M−1
∑

i

jiki −
[
M−1

∑
i

1
2
(ji + ki)

]2

M−1
∑

i

1
2
(j2

i + k2
i ) −

[
M−1

∑
i

1
2
(ji + ki)

]2 , (7)

where M is the total number of links and ji and ki are
the degrees of nodes at the ends of the ith edge, with i =
1, · · · ,M [12]. When r > 0 the network is assortative,
and when r < 0, it is disassortative. For model A, we
obtain r � 0.44, which clearly shows that the obtained
network is assortative.

2. Model B

A behavior similar to that of model A can be found
in model B. In Fig. 3, we show the P (k) distribution
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obtained from model B. From the best fit of the data to
Eq. (6), we obtain γ ≈ 2.1. The value of γ in model B
is slightly smaller than that for model A. The smaller
value of γ in model B comes from the effective rewiring
process in model B. Even in the preferential attachment
model, γ decreases as the rewiring probability increases
[9]. In model B, the attachment of new links enhances the
effective rewiring probability. As a result, the value of γ
for model B becomes smaller than that for model A. The
Pearson coefficient, r, for model B is also positive (r �
0.31). This shows that the addition of new links simply
enhances the heterogeneity in the degree distribution.

IV. SUMMARY AND DISCUSSION

In summary, inspired by the aging dynamics in bio-
logical systems, we introduce social interactions to the
evolutionary dynamics of networks based on the Penna
bit-string model. From numerical simulations, we find
that the obtained networks satisfy a power-law degree
distribution of γ � 2.1 ∼ 2.3 with an exponential cutoff.
The emergence of a scale-free behavior in P (k) is under-
stood from the well-known dynamics of the duplication-
divergence model for PIN. By measuring 〈knn〉 and the
Pearson coefficient, we also find that the networks are as-
sortative, which is a well-known characteristics of social
networks. Because most social networks are assortative
and SFN with γ � 2 ∼ 3 [1], we expect that our model
can be applied to study various properties in social net-
works. For example, google plus requires an invitation
from an already registered user to enroll in the service
as a new user [25]. Thus, the evolutionary dynamics of
the social network in google plus is directly mapped into
our model in the following way: The registered user and
the new user correspond to the parent and the offspring
in our model, respectively. Aging can be interpreted as
a gradual loosing of their interests on SNS. In this map-
ping, it is natural to assume that the friends of registered
user have more chance to be a friend of new user because
invitations would more frequently occur between peo-
ple who are already acquaintances. An age-dependent
activity has been observed in Gowalla [26]. Gowalla is
a location-based SNS created in 2009. The empirically
measured user activity distribution of Gowalla decays
exponentially as in Eq. (1), and the P (k) distribution
is known to have a power-law tail [26]. Therefore, we
expect our model to provide a theoretical framework to
investigate various social phenomena in SNS.
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