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Biased Random Walk Sampling on Assortative Networks
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We study the statistical properties of sampled networks by using a biased random walker on as-
sortative networks. In the biased random walk sampling, all the nodes visited by the biased random
walker and the links that connect any pair of visited nodes are sampled. Here, the probability that
a walker moves to one of its nearest neighbor depends on the degrees of the nearest neighbors. We
compare the topological properties, such as the degree distribution, the degree-degree correlation,
and the clustering coefficient of the sampled networks with those of the original networks. From
the numerical results, we find that most of the topological properties of the sampled networks by
the biased random walk are almost the same as those of the original networks when the network is
assortative. Moreover, from the measurement of the clustering coefficient, we find that the hierar-
chical structures are better inherited through a biased random walk sampling when the network is
highly assortative.
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I. INTRODUCTION

Complex networks [1] are ubiquitous in real world. Ex-
amples of such studies include protein-protein interac-
tion networks (PIN) [2], the world-wide web (WWW) [3],
email network [4], etc. Empirical data or information of
real networks are collected in various ways; for example,
the traceroutes for the Internet [5] and high throughput
experiments for protein interaction map [6]. Thus, it is
natural that the empirical data should be incomplete for
various reasons which come from some limitations of the
experiments and experimental errors or biases. There-
fore, it is very important to validate if the topological
properties of the sampled networks are identical to those
of the entire network or not.

Recently, several sampling methods, such as random
sampling [7,8] and snowball sampling [8], were studied.
Random sampling is the simplest method in which the
sampled network consists of randomly selected nodes or
links with a given probability p. A well known example
of random sampling is a statistical survey in some social
systems. In random sampling, however, many important
nodes, such as hubs, are not sampled due to the even se-
lection probability. In the snowball sampling method, all
nodes directly connected to the randomly chosen start-
ing node are selected. Then, all the nodes linked to those
selected nodes in the last step are selected hierarchically.
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This process continues until the sampled network has the
desired number of nodes [8]. Previous studies showed
that the topological properties of the sampled networks
strongly depend on the sampling methods [8].

More recently, we studied a random walk sampling
[9] by assuming that the probability to sample a node i
with degree ki is proportional to ki. Using the uncor-
related theoretical networks and several real networks,
we showed that the random walk sampling reflected the
topological properties of the original networks much bet-
ter than random sampling and snowball sampling [9].
However, many real networks have degree-degree corre-
lation [10] and the degree-degree correlation is known to
affect various phenomena. For example, the percolation
transition in correlated networks shows a nontrival be-
havior when degree-degree correlation is positive (assor-
tative) [11]. Moreover, some networks, such as PIN, have
revealed that nodes of large degree are more studied [9],
which reflects some bias in network samplings. However,
there have not yet been any systematic studies on the ex-
plicit relationship between the degree and the bias. Like
the percolation on assortative networks, in the sampling
of networks using a random walker, assortative mixing
can accelerate the sampling of hubs and the nodes con-
nected to them, which causes some non-trivial sampling.
Therefore, in this paper, we study the biased random
walk sampling method (BRWSM) on assortative net-
works for a more systematic approach to the relationship
between the assortativity (positive degree-degree corre-
lation) and generalized random walk sampling method.
Using numerical simulations, we show that the sampled
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network through the biased random walk can preserve its
original topology much better than an unbiased random
walk sampling when there is a positive degree-degree cor-
relation. Especially, from the measurement of the clus-
tering coefficient, we find that if there is any hierarchical
structure in the original network, then BRWSM can pre-
serve the hierarchial structure much better than other
sampling methods. We also discuss some possible haz-
ards in the analysis of real network data that can be
arise from the relationship between the BRWSM and
the degree-degree correlation. As a result, we expect
this study to provide better insight into understanding
the important properties of real networks and to offer a
systematic approach to understanding real network data.

The paper is organized as follows: In section II, we
introduce the network models and BRWSM. In Section
III we present the simulation results. Summary and dis-
cussion are given in Section IV.

II. MODEL

1. Degree-degree Correlation

Since many real networks are known to be scale-free
(SF) networks [1], we only consider SF networks in this
study. A SF network is characterized by a power-law
degree distribution, P (k) ∼ k−γ . In order to generate
the original SF network of size No, we use the static
model suggested by Goh et al. [12]. In the static
model, a weight wi = i−σ is assigned to each node i
(i = 1, 2, · · · , No and 0 ≤ σ < 1). By adding a link
between unconnected nodes i and j with probability
wiwj/(

∑N
n=1 wn)2, one can obtain a SF network. The

value of γ of the resulting SF network is known to sat-
isfy the relation γ = (1 + σ)/σ. Thus, by adjusting σ,
we obtain a network with any γ (> 2).

When there are M edges, the degree-degree correlation
is generally measured by using the Pearson coefficient.
The Pearson coefficient is defined as [10],

r =
M−1

∑
i jiki −
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∑
i
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]2
M−1

∑
i
1
2 (j2
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∑
i

1
2 (ji + ki)

]2 , (1)

where ji and ki are the degrees of the vertices at the ends
of the ith edge, with i = 1, · · · ,M . When r > 0 (r < 0)
the network is said to be assortative (disassortative). For
the systematic generation of correlated networks, we use
the edge exchange method [13]. In this edge exchange
method, two randomly selected edges are shuffled with
probability p. The degree-degree correlation of the orig-
inal network can be adjusted by choosing a proper value
of p [13]. For γ < 3, it is not easy to obtain an assorta-
tive network. Thus, in most of the following simulations,
we consider SF networks with γ > 3.

2. Biased Random Walk Sampling Method

We now introduce the BRWSM. After the preparation
of the original network, a walker is placed at a randomly
chosen node. At each time step, the walker takes a biased
random walk. The probability that a walker at a node i
moves to one of its nearest neighbors, j, is given by

Pij =
kj

α∑
l∈Γi

kl
α , (2)

where kj is the degree of node j and Γi represents the
set of i’s nearest neighbors. α controls the degree of bias.
The walker moves until it visits Ns distinct nodes. Then,
we construct subnetworks with these Ns visited nodes
and the links which connect any pair of nodes among the
Ns visited nodes in the original network. In the biased
random walk, the probability to find a walker at a node
of degree k is [14]

PBRW(k) ∼ kα+1. (3)

From Eq. (3), we expect that if α > −1 and the network
is assortative then the core region which consists of nodes
of large degrees is more easily sampled by using the BR-
WSM than other sampling methods. Thus, the network
sampled by using the BRWSM is expected to preserve
the topological properties of the original network.

III. NUMERICAL SIMULATIONS

1. Degree Distribution

The degree distribution is one of the most important
measures for the heterogeneity in the network topology
[1]. In Fig. 1, we compare the degree distributions be-
tween the sampled networks to those of the original net-
works with γ = 4.5 for various α and the Pearson coef-
ficient of the original network, r(No). We find that the
degree distribution of the sampled network also satisfies
the power-law. However, if α or r(No) is small (Figs.
1(a)-(c)), then γ of the sampled network noticeably de-
viates from that of the original network, γ = 4.5. On
the other hand, when both r(No) and α are large (see
Fig. 1(d)), γ of the sampled network remains the same
as that of the original network. In Fig. 1(e), we summa-
rize the change in γ(Ns) for various values of r(No) and
α. The result indicates that when the assortativity of an
original network increases, then the BRWSM with large
α preserves its degree distribution much better.

2. Degree-degree Correlation

The degree-degree correlation can also be measured
from the average degree of the nearest neighbors of nodes
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Fig. 1. Plot of P (k) for a small value of r(No)(= 0.2) with
(a) α = 0 and (b) α = 2. Plot of P (k) for large r(No)(= 0.9)
with (c) α = 0 and (d) α = 2. (e) Plot of γ(Ns) for various
r(No) and α. The solid line in (e) represents γ of the original
network, γ(No) = 4.5.

with degree k, 〈knn(k)〉 [15]. When the network is neu-
tral, 〈knn(k)〉 does not depend on k. On the other
hand, if the network is assortative (disassortative), then
〈knn(k)〉 increases (decreases) as k increases. Figs. 2(a)
and (b) show 〈knn(k)〉’s for α = 0 and α = 2, respec-
tively, when r(No) = 0.2. As shown in Figs. 2(a) and
(b), the sampled network shows two different behaviors
depending on α. When α = 0, although the value of
〈knn(k)〉 for r(No) = 0.2 decreases as Ns decreases, its
functional dependency on k is not changed from that
of the original network. On the other hand, if we in-
crease α, then 〈knn(k)〉 of the sampled network becomes
a decreasing function of k even for Ns = 0.6No (Fig.
2(b)). The value of 〈knn(k)〉 for large r(No) are also dis-
played in Figs. 2(c) and (d). From the data, we find
that 〈knn(k)〉 is almost the same as that of the original
network for α ≥ 0. For a more detailed study, we also
measure the Pearson coefficient of the sampled network
with Ns nodes, r(Ns), as shown in Fig. 2(e). From the
data in Fig. 2(e), we find that r(Ns) shows the same
behavior as those for the analysis of 〈knn(k)〉 when the
original network is weakly assortative (r(No) = 0.2) or
highly assortative (r(No) = 0.9). For an intermediate
value of r(No)(= 0.6), we find that r(Ns) significantly

Fig. 2. Plot of 〈knn(k)〉 for a small value of r(No)(= 0.2)
with (a) α = 0 and (b) α = 2. Plot of 〈knn(k)〉 for large
r(No)(= 0.9) with (c) α = 0 and (d) α = 2. (e) Plot of r(Ns)
for various values of α and r(No). The Pearson coefficient of
the original networks, r(No) = 0.9, r(No) = 0.6, and r(No) =
0.2, are denoted by a solid line, a dashed line, and a dotted
line, respectively.

deviates from r(No) for any α(> 0).

3. Clustering Coefficient

The clustering coefficient Ci of a node i is defined by

Ci =
2yi

ki(ki − 1)
, (4)

where ki is the degree of node i and yi is the number of
connections between its nearest neighbors [1]. Ci physi-
cally means the fraction of connected pairs among pairs
of node i’s neighbors. Ci is one if all neighbors are com-
pletely connected whereas Ci becomes zero on an infinite-
sized random network [1]. By averaging Ci’s over the
same k, we obtain C(k). The measurement of C(k) is
also important because C(k) is known to reflect the hi-
erarchical modular structure of networks [16]; C(k) does
not depend on k if the network does not have any well-
defined hierarchical modules [16]. In Fig. 3, we compare
the C(k)’s for the original network and the sampled net-
works. From the data in Fig. 3(a), we find that, if both
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Fig. 3. Plot of C(k) for a small value of r(No)(= 0.2) with
(a) α = 0 and (b) α = 2. Plot of C(k) for large r(No)(= 0.9)
with (c) α = 0 and (d) α = 2.

r(No) are small (r(No) = 0.2 and α = 0), the functional
form of C(k) of the sampled networks is relatively well
preserved; C(k) increases for k < 30 and decreases when
k > 30. However, if α increases (α = 2), then the func-
tional form of C(k) noticeably deviates from that of the
original networks when Ns < 0.2No (Fig. 3(b)). The
α-dependent behavior of C(k) for large r(No) is com-
pletely different from that for small r(No). As shown
in Figs. 3(c) and (d), we find that the value of C(k) of
the sampled networks coincides with that of the original
networks when α increases. This result implies that if
the network is highly assortative and has any kind of hi-
erarchical structure, then only the BRWSM can preserve
its hierarchical structure.

IV. CONCLUSION AND DISCUSSION

We study the topological properties of sampled net-
works by using the BRWSM with assortative SF net-
works. From the numerical simulations, we find that
the P (k) of the sampled network follows the power-law
P (k) ∼ k−γ , even for a relatively small Ns(= 0.1No). We
also show that the BRWSM with large α preserves the
topological properties, such as the degree distribution,
the degree-degree correlation, and the hierarchical struc-
ture, of an original network very well when the original
network is highly assortative.

Based on our measurement, we now address some re-
marks on a possible hazard in the analysis of real data.
From the measurement of 〈knn(k)〉 and r(Ns), we find
that if the network has a relatively weak degree-degree
correlation (r(No) < 0.6), then the BRWSM can de-
crease the degree-degree correlation, and sometimes sam-
pled networks can show a disassortative mixing (for ex-
ample, see Fig. 2(b)). This indicates that the local topol-
ogy around the hubs of the sampled networks becomes
star-like. Therefore, if the sampling methods are highly

biased, for example, the traceroutes [5], and the degree-
degree correlation of an original network is close to neu-
tral, then the degree-degree correlation of the sampled
networks can be significantly changed by the sampling
process. Therefore, in this case, a very careful investi-
gation of the topological properties of the obtained net-
works is necessary.
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