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Summary

Intracellular signal transduction occurs through cascades
of reactions involving dozens of proteins that transmit
signals from the cell surface, through a crowded cellular
environment filled with organelles and a filamentous
cytoskeleton, to specific targets. Numerous signaling
molecules are immobilized or transiently bound to the
cytoskeleton, yet most models for signaling pathways have
no specific role for this mesh, which is often presumed
to function primarily as a scaffold that determines cell
mechanics but not information flow. We combined
analytical tools with several recently established large-scale
protein-protein interaction maps for Saccharomyces

cerevisiae to quantitatively address the role of the
cytoskeleton in intracellular signaling. The results
demonstrate that the network of signaling proteins is
intimately linked to the cytoskeleton, suggesting that this
interconnected filamentous structure plays a crucial and
distinct functional role in signal transduction.

Supplemental data available online
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Introduction can be used as tracks to move organelles within the cell,
The normal functioning of a cell requires constant interactio@nd provide transient docking sites for proteins and lipids
with its extracellular environment and with other cells, andMochly-Rosen, 1995; Isenberg and Niggli, 1998; Janmey,
these interactions lead to changes in cell physiology, cell shag@98). However, most of the evidence regarding the role of
and gene expression. Signals from neighboring cells arfie cytoskeleton in signal transduction originates from
the extracellular matrix are perceived by membrane-boungxperiments that employed destructive perturbations to the
receptors, resulting in changes in their biochemical or physicglytoskeleton, such as those caused by drugs that depolymerize
states that typically initiate a cascade of signaling events withiflaments. These manipulations cause a complete loss of one
the cell (Pawson, 1995; Rosales et al., 1995). Intracellul&ar more cytoskeletal elements, leading to global changes that
signal transduction might involve physical processes (such &omplicate the interpretation of experiments.
diffusion), chemical changes (such as phosphorylation) of Recent progress in proteomics offers the possibility to
signaling intermediates or both. For most characterized signguantitatively address the role of the cytoskeleton in
transduction pathways, the initial signaling event and the enigitracellular signaling. Analysis of protein interactions on the
point are known, but intermediate events that transmit thecale of entire proteomes by yeast-two-hybrid screening and
signal are either partially or completely unknown. In order tgrotein purification has generated a huge amount of
fully understand intracellular signal transduction, it is essentidhformation regarding protein networks within the cell. So far,
to know the intermediate signaling molecules and tdhese large scale experimental approaches have been applied
understand how information flows from one to the next. Thesmost extensively to the budding yeas$accharomyces
issues are difficult to address experimentally because signalingrevisiae(Fields and Song, 1989; Gavin et al., 2002; Ho et
molecules typically bind each other transiently and withal., 2002; Ito et al., 2001; Ito et al., 2000; Bader et al., 2001,
relatively low affinities. Maslov and Sneppen, 2002; Mewes et al., 2002; Tong et al.,
The cytoskeleton, an interconnected assembly of acti2002; Uetz et al., 2000; Xenarios et al., 2000; Jansen et al.,
intermediate filament and microtubule networks that exten2003). In this study, we developed several independent,
throughout the entire cell, is involved in intracellular quantitative methods to probe for correlations of functionally
signal transduction (Rasmussen et al., 1990; Hameroff etefined protein classes. Specifically, we tested the hypothesis
al.,, 1992; Ingber, 1993a,b; Forgacs, 1995a,b; Burridge arithat the network of interacting cytoskeletal proteins and the
Chrzanowska-Wodnicka, 1996; Janmey, 1998; Shafrir et alnetwork of signaling proteins are integrated to a higher degree
2000). Experimental evidence indicates that individual filamentthan other functionally defined classes of proteins. We found
of the cytoskeleton transmit mechanical perturbations, whicthat the correlation of signaling proteins with cytoskeletal
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proteins is much stronger than with 15 other protein classe®mposition ofy-proteins at distance from anx-protein. Thus, the
examined. These results strongly suggest that without thanalysis was carried out for pairs of proteins that directly interact
cytoskeleton, the intracellular signaling apparatus of the ce(P=1), that interact via one bridging proteiirg), and so on.

cannot properly function.

Results and Discussion
Materials and Methods Definitions of signaling and cytoskeletal proteins

Interaction maps In order to construct the signaling) (and cytoskeletalcj

Two independently performed, comprehensive two-hybrid assaprotein sets, we categorized the gene produc® oérevisiae
screens were reported and interaction maps summarizing their reswts components of a signaling pathway, the cytoskeleton or
were extensively characterized (Ito et al., 2001; Uetz et al., 2000heither of them (the randomset). The rules used to define
These databases primarily contain information regarding pair-wWisghese sets were based on experimentally determined,
protein-protein interactions, although they also contain interaCtionaiochemical or genetic features of each protein, without a

mediated by intermediate bridging proteins. The database h :
interacting proteins (DIP) (http://dip.doe-mbi.ucla.edu/) (Xenarios e eferen(_:e to the databases that _c_onstltute the available
al., 2000) and the Munich Information Center for Protein Sequencégteracno.n maps. Because. cere\/_|_3|aedoes not have
(MIPS) (http://mips.gsf.de/) (Mewes et al., 2002) give information/ntermediate filaments, the composition of the cytoskeleton
based on two-hybrid screens, biochemical purification, andvas defined as actin, tubulin, proteins that bind actin or tubulin,

genetically-derived interactions. Here, we present a quantitativeroteins that bind a protein that binds actin or tubulin, and the
analysis based on the two-hybrid screen of Uetz et al. (Uetz et abeptins, leading to the identification of 125 cytoskeletal
2000) (referred to as ‘U database’), which contains 4480 interactionsroteins, which is 2.2% of the yeast proteome (see
between 2115 proteins and is the smallest interaction network, argipplemental data for the entire list, http:/jcs.biologists.org/
DIP (Xenarios et al., 2000) (referred to as ‘D), which contains 20,098 ,pplemental/). This definition includes the filamentous septin,

interactions among 5798 proteins and provides one of the largeg{e actin and tubulin networks (including known cross-linkers,
networks. In the interaction maps analyzed in the present worl&

proteins are represented as nodes (small circles) and the interacti?r%oﬁ’.mg’t se\?erlngi r(]atc. pr:_otr(]alnszj, ?ndthmolst protelnsbthat
are represented as lines linking the nodes. Within these networks,%ca 1z€ (o actin patches, which underiie tneé plasma membrane

connected ‘cluster’ is defined as the set of proteins for which a pafand are prominent components of the yeast cytoskeleton.
between any two nodes (through the links) exists. We performed od€ set of signaling proteins included all protein and lipid
analysis on the largest connected cluster of each interaction netwokdnases, phosphatases, GTPases and their auxiliary factors,
For the U database, the largest such cluster contained 1458 nodeaterotrimeric G-protein-linked membrane receptors, nucleotide
(approximately 24% of all yeast proteins), whereas the largest clusteyclases/phosphodiesterases, and biochemically or genetically
for the DIP database contained 4198 nodes (approximately 68% of @haracterized scaffolding proteins. This analysis identified 342
yeast p_rotelns).We note that, although strong disparities exist betweg[gna"ng proteins, 5.9% of the proteome (see supplemental
the various datasets, all datasets led to similar results. data for the entire list). Twenty proteins were common to both
sets. Importantly, the criteria used to define cytoskeletal and

Quantitative analysis signaling proteins are _cor}servative and ind_epenpient of each
To quantitatively study the clustering tendency of proteins in th@ther. Several metabolic kinases known to bind directly to the
various subclasses we employed several approaches. For glolsdtoskeleton (e.g. phosphofructokinase) were not included in
characterization of clustering we defined for each protein piinl  the cytoskeleton protein set because they might obscure the
the interaction network the distandg as the length of the shortest more subtle interplay between the cytoskeleton and other
path connecting them, and analyzed the distance distriftghfor  signaling pathways. In addition, uncharacterized open reading
all possible combinations of proteins. By this definition, the value oframes with homology to known signal transduction proteins
dag therefore cingAB:l f?f ﬁ)rot‘ejiﬁ;m andB that imeracé d"ﬁCt'Bé(i-ﬁ- were excluded. These definitions, therefore, focused the
are connected by one link) adgs=2 for proteinsA andB that bot ; ; ; ; ; : ;
interact directly with C, but not with each other (and ttiwsdce=1), an?rlgﬂls :\?ailgrgjlgelns for which functional information is
etc. This metric describes the distribution of path lengths between att y ’
pairs of interacting proteins in a given cluster.

To characterize the local structure of interaction networks, W%I bal cl .
introduced the local clustering indexi(x/y), which counts all those obal clustering
proteins (denoted by) that are at a distanekfrom a given protein  In the currently available protein interaction databases,
(denoted by). Here,x andy stand for the various protein classes: information was available for subsets of the proteins in the
cytoskeletal proteins, signaling proteiny, a protein that is not in  classes defined by us. In the database by Uetz et al. (Uetz et
classc or s. By its definition,my(x'y) contains information about the gl 2000) and in DIP (Xenarios et al., 2000), we identified 74
numper of those_y—type proteins that are steps away fro_m a given (U) and 92 (D) cytoskeletal proteins, and 141 (U) and 207 (D)
proteinx, or equivalently that can be reached froiy 3 links. The  gignaiing proteins in the largest interconnected clusters. Fifteen
primary ‘d=1-neighbors’ or ‘nearest neighbors' of a given protein  \jy 5,418 (D) proteins were shared by the two classes in each

are those proteins that directly interact with proteiThe nearest- datab S isinalv. tubuli d tubuli iated tei
neighbor clustering indexm(c*/s) for a selected cytoskeletal protein atabase. surprisingly, tubulin and tubulin-associated proteins

c* is then calculated as were not present in the largest connected clusters for either the
_ _ database by Uetz et al. or DIP; they formed separate connected

mu(cHfs) = number of those nearest nelghborg’tﬂhat ares proteins clusters with a small number of proteins.
total number of nearest neighbors of c* The largest connected cluster within the U database shows

For a given protein, this metric gives the proportion of interactions téhe ¢ proteins in yellows proteins in green and proteins found
other proteins in a given class. Analogousiy(x/y) quantifies the in both classes in red (Fig. 1). Inspection of Fig. 1 qualitatively
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o Numbers in brackets give the average distaridEst{etween

Fig. 1. The largest connected cluster of 1458 interacting proteins of indicated proteins. (a) Results based on the database of Uetz et al.
the database by Uetz et al. (Uetz et al., 2000). In this cluster, yellow(Uetz et al., 2000). (b) Results based on the DIP database. The larger
and green dots denote cytoskeletal and signaling proteins, nymber of.prc.)telr)s in the DIP dataset is manifest in a narrower
respectively, as defined by our criteria. Proteins in red are shared byfistance distribution and higher peak values.

the two subclasses. The analogous cluster in the D network contains

4198 proteins. It is not shown here because the density of proteins

was too high for visual examination is independent of these interaction maps. It is, however,

consistent with the built-in enhanced clustering of cytoskeletal
proteins in thatdccis the smallest among the values listed in
suggests correlations between cytoskeletal and signalirfgig. 2. Here[d[denotes the average @bver the distribution
proteins because the majority of these two protein groups forf(d). For the case of the DIP network map of cytoskeletal
relatively localized clusters within the network. proteins, where [dccF4 (Fig. 2), the majority ofc-c

To quantify the clustering tendency of proteins in each classonnections do indeed havedd This observation suggests that
we calculated the distance distributiefd) (see Materials and P(d) accurately describes interactions within the networks and,
Methods) for all protein pairs in the largest interconnecteéis more information is obtained regarding interactions of
clusters (Fig. 2). Because the distance between two proteigsllular proteins, the methods we have devised should be of
was defined as the number of links required to travel from ongeneral use.
protein to another (see Materials and Methods), the function Using distance distribution analysis, we also determined
P(d) for all proteins in a cluster reflects the degree to whiclhow closely signaling proteins are linked to cytoskeletal
the proteins within the cluster interact with each other. Wheproteins. As can be seen from Fig. 2, the peak vali®éda$),
calculated for the set of all proteins in the largest connectetthe distance distribution for all pairs ®&nds proteins, is also
cluster in the database by Uetz et al., the peaR(df was  shifted to smalled values, indicating that the two groups are
approximately ati=6.8. As expected, the peak of the distancenore linked to each other within the network than it was
distributions for thec and s proteins was shifted to lower expected for two random sets. Interestingly, the degree to
values, 5.4 and 6.0, respectively, indicating that proteins withivhich s proteins are linked to proteins (as measured ¢d)
these groups preferentially interact with each other. Thavas approximately the same as $gproteins alone (Fig. 2).
corresponding values for all proteins, cytoskeletal proteins anthis result suggests that signaling proteins are intimately
signaling proteins derived from the DIP data set are 5.4, 4lihked to the cytoskeleton.
and 4.3, respectively. Notice that, due to our definition of the
cytoskeletal protein class, the maximum valuel@f derived )
from an ideal interaction map, should te=4, because for Local clustering
each protein in this class (except for septins) the maximdrihe distance distributiof®(d) (Fig. 2), gives a global measure
distance from actin is two. (Although the distance betweenf clustering. To gain information about the local composition
septins and actin is not constrained, only three septins appezrthe interaction networks, we calculated the local clustering
in the largest interconnected U and D clusters so their effeatdex, my(x/y) (see Materials and Methods). This metric
on the maximum value afcc is negligible.) Not surprisingly, characterizes the proportion of proteins at distahé®m a
this (dc=4) is not reflected by the two datasets that wergiven protein in thex class that are members of the protein
used, because our procedure to classify the yeast proteiolgssy. In Fig. 3 we plot the average clustering index
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24 that were calculated for a#f and c proteins. To determine

—8—X=C, y=C —8—X=C, y=C whether by this analyssproteins are more closely linked to
201 ey | ey ] cproteins, it was necessary to compareof these groups
216l —v—x=s,y=5 | —v—X%=5,y=S | to my of randomly chosen proteins. The classes of randomly
= X y=C ——X=1 y=C chosen proteins were termed the pseuidod pseuds classes
= —e—X=T, Y-S —<— %=1, Y=S . ;i
=12t 4 and they contained as many randomly selected proteins as there
X arec ands proteins in the largest interconnected clusters of the
\é; 8 employed protein interaction maps.
al In Fig. 4 we summarize the results of this comparison. For
the ¢ proteins,im(c/c)Cis about an order of magnitude larger
ol ¥ for the true cytoskeletal class than for its pseudo analogue,

which might reflect our definition of theclass. However, the
difference between the true and pseudo classes remains
Fig. 3.Plot of the rescaled average local clustering ifdefiinandd  consistently large (around a factor of three) for all the other
using the database of Uetz et al. (Uetz et al., 2000) (left) and the DIBombinations of thex andy proteins, independently of the
database (right). dataset used. These results indicate that, at least within the
datasets used, the clustering tendency ofcthad s proteins

and the correlation of the two classes are inherent properties
[na(x/y) Ema(x/y)/N (with N being the total number of proteins ¢ ihese proteins. prop

in the network) for the various protein classes. This analysis

indicates that, at short distances, signaling proteins and

cytoskeletal proteins interact primarily with proteins of theThe special role of the cytoskeleton in signaling
same class. Notice th&ng(c/c)(ddecays fast as a function of networks

distance and at=4 practically reaches its asymptotic value, rpe regyits in Figs 2 to 4 suggest that the cytoskeleton and
indicating again that the networks derived from the U and naling networks are linked. However, this might fortuitously
databases are consistent with our independent definition of t Scil,ult from the limited nature of the interactions detected by
se;[ oIhcytol;skeletal r;rotelnsl. ering tend  broteins frofe datasets used. To address this possibility, we studied the
twon dif?e?er?ter::(l:;sgesgyaﬁclijs ertlr?g I?)rc]:alenc%s(t)erli)rzo ei'r?dsexro@orrelation between the class of signaling proteins and 15 other
ru(x/y)Oshould be ind(e en?j/)ent of distance andgshould bfunctional protein classes as defined by the MIP database
e ualyto the average der?sit of feroteins in the network ewes et al., 2002). We calculated local clustering indices for
q g y e signaling proteins of each of the other 15 classes of proteins:

xIY)ENy/N, where Ny denotes the total number of ! i .
Err:)a{g?%sy)thaty belong to )(/:Iasys By contrast, if proteins [e(s/1) iMvand (=0 to14), where denotes the number of the

belonging to the& andy classes have a tendency to cluster, thet
[Prvand(x/y)Cshould be higher thaN,/N for small values ofl, @) 0.4
should decrease monotonically and converge to a value smal
(possibly zero) thaNy/N for larged values. These expectations

0.05

)
)

are indeed supported by the plots in Fig. 3. For example, usit ' cytoskeletoh pscudo cytoskieton
the DIP dataset, the proportion @proteins connected by a 1 i

single link to & protein (red curve at=1) is almost three times 0.24 0.15 0.09 0.05
greater than the same quantity evaluated by replacing the signaling pseudo signaling

protein by a randomly selected protein (magenta curdelgt
Furthermore, this proportion is about six times higher than th
proportion ofs proteins linked to the cytoskeleton by six or 0.36 0.10
more bonds (red curve dt6). Similar relationships are seen (b)
for the proportion ot proteins that are linked ®proteins by

few bonds compared to many bonds (green curve), where

C
C

038 0.02

)
)

analysis of random protein sets shows the predicted fli T v T v
distribution cytoskeleton pseudo cytosieton
' Y 7'y
Notice that, because the protein classeand s contain
. . . . 0.19 0.11 0.05 0.02
different number of proteins and the local clustering inde»

is affected by the proportion of proteins in each class withit signaling pseudo signaling
the entire network, it was necessary to plot rescaled values
the clustering indice&nd(x/y)mrand. The values of rescaled
clustering indices are smaller than one alreadydf® (the 0.30
largest distance is shown in Fig. 3), indicating that at larg_. . - .
di_stances, there is no preferential interaction between proteit'f:r'c?mt tToh; Eg?trﬁzmﬁ 'gga%rg'Bﬁi{gﬁ;g%ﬁ@%ﬁr&g@gg:m
within thec ands classes. . . . respectively, summarize results from Fig. 3. Right half present results
To further address linkage between signaling antor pseudo protein classes that were constructed by randomly
cytoskeletal proteins by using the local clustering index, Wiselecting 74 (U) and 92 (D) pseudolass proteins, and 141(U) and
compared the nearest-neighbor clustering indéragx/y)l] 207 (D) pseuds class proteins from the fully connected clusters.

g
g

0.05
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functional protein class (specified in the legend to Fig. 5). As The cytoskeleton represents a global structure, spanning the
shown in Fig. 5, the nearest-neighbor clustering indaxfor  entire cell. Thus, its association with various functional protein
sproteins tac proteins [2.83(U) and 6.68(D)] is almost twofold classes (in particular with the signaling network) could be
higher than to the next most closely linked class of proteinexpected. To see whether our analysis is consistent with
(class 2 in Fig. 5), that are involved in cell growth, cell divisionthis expectation, we repeated the above calculation for
and DNA synthesis [1.54(U) and 3.9(D)]. These resultsing(c/i)imang, the local clustering index of the cytoskeletal
confirm that the cytoskeleton plays a distinguished role in thproteins, and plotted the results in Fig. 6. Indeed, as the
organization of the signaling network of cells. comparison of Figs 5 and 6 reveals, the association of the
proteins with the 15 functional protein classes defined in the
MIPS database is quite uniform, suggesting that signaling

4 . . . o
' ' ' ' o proteins have no special role in the organization of the
—e—1 cytoskeleton. This is particularly well reflected by the values of
\ ﬁéﬁ; ] mi. The nearest-neighbor clustering index for ¢h@oteins to
3 < ——4
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Fig. 5. ing(s/i) Imrand (i=0 to14) for fifteen functional protein classes ¥ ! r
in addition to thesandc classes. Plots are based on the database by e ——g—
Uetz et al. (Uetz et al., 2000) (top) and the DIP database (bottom). 6 7 8

The 15 functional protein classes are: 0, metabolism; 1, energy; 2,

cell growth, cell division and DNA synthesis; 3, transcription; 4, d

protein synthesis; 5, protein destination; 6, transport facilitation; 7,

cellular transport and transport mechanisms; 8, cellular biogenesis; Fig. 6. ing(c/i)Zimrand (i=0 to14) for 15 functional protein classes in
cell rescue, defence, cell death and ageing; 10, ionic homeostasis; :addition to thesandc classes. Plots are based on the database by
cellular organization; 12, transposable elements; viral and plasmid Uetz et al. (Uetz et al., 2000) (top) and the DIP database (bottom).
proteins; 13, classification not yet clear cut; 14, unclassified protein<The fifteen protein classes are the same as in Fig. 5.
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thesproteins [fm(c/s)[lis much closer to the analogous quantity
of the c proteins to the proteins in class @n{(c/2)0], than
the corresponding quantities withreplaced bys: [Bm(c/s)l]
(m(c/2)dis 44% (U) and 61% (D) smaller thdrim(s/c)l
i (s/2)0]

The quantitative analysis presented here, suggests that 1
topological properties of intracellular signaling pathways
within the protein interaction network &. cerevisiaeare
strongly dependent on the cytoskeleton. This linkage was eve
more evident when only those cytoskeletal and signalini
proteins were analyzed, that are connected to each oth
exclusively throughc or s proteins. The corresponding
subnetwork derived from the U database is shown in Fig. °
All proteins that directly connect the two classes are unusu
in that they have the highest number of links (at least four
They are hubs and are distributed throughout the networl
indicating that the cytoskeleton and the set of signaling

MYOla
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molecules are linked in a global manner.

The protein interaction networks analyzed here are exampl
of scale-free networks (Barabasi and Albert, 1999; Jeong et a 87W
2001; Jeong et al., 2000) that are simultaneously tolerant

uD2
TE7
3
1S3 TPK3
CK1

SP1 ﬁl

OJXR‘Plo/OARpl RB1

KA2 RCK1 SLT2
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random errors and fragile against the removal of the mo:
connected nodes or hubs (Albert et al., 2000). To investigag. 8. The signaling subnetwork shown in Fig. 7, aftergipeoteins

the significance of the hubs in the present context we remov

t connect to the cytoskeleton were taken out. [Results are only

all signaling proteins that link the signaling subnetwork to theshown for the database by Uetz et al. (Uetz et al., 2000).]
cytoskeleton (23 of the 28 hubs). The resulting interaction

map (with only those proteins shown that have at least

one connection) is plotted in Fig. 8. The total collapse or It is perhaps not surprising that a large number of the most
fragmentation of the signaling network (as seen in Fig. 8tonnected hubs in the subnetwork were identified as being
strongly suggests that without communication with themembers of both the cytoskeleton and the signaling subsets.
cytoskeleton the signaling apparatus of the cell cannot proper§ome of these proteins, such as the yeast WASP homolog

function.
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v e T HO85
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2
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ApG17 KIN
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Fig. 7.Combinedc-ssignaling subnetwork, derived from the largest
connected cluster in Fig. 1. Yellow and green dots denote signaling

Las17p and the yeast PAK1 kinase homolog Cla4p, are well-
characterized regulators of the cytoskeleton and coordinate
cytoskeletal dynamics with changes in cell growth, division,
and mating. Other hubs provide crucial (possibly the only)
connections between two parts of the signaling network. For
example, Akrlp, an ankyrin repeat-containing cytoskeletal
protein, provides a pathway in this network to transmit a signal
from Gcslp and Ste3p to other components of the mating
pathway (Ste4p, Ste5p and Stel8p).

The analysis presented here provides quantitative evidence
for the long-standing hypothesis that the cytoskeleton
participates in an important way in intracellular signal
transduction. How might the cytoskeleton be used in signal
transduction pathways? The results of the network analysis
suggest that the cytoskeleton is involved in at least two ways.
First, individual proteins of the cytoskeleton might participate
directly in signal transduction by linking two or more signaling
proteins. One implication of this role is that the cytoskeleton
might provide alternative signal transduction routes so that there
are multiple pathways to transduce a signal. Second, the
cytoskeleton might provide a macromolecular scaffold, which
spatially organizes components of a signal transduction cascade
(Park et al., 2003). This would be analogous to the role of
molecular scaffolds, such as the yeast Ste5 protein, that tether
multiple components of a pathway to promote signal
transduction between them. The analysis presented here

and cytoskeletal proteins, respectively, proteins in red are shared bySUggests that, during eukaryotic evolution, signaling pathways
the two subclasses. Only proteins with at least one connection are “have incorporated components and features of the cytoskeleton
shown. [Results are only shown for the database by Uetz et al. (Uetas their integral parts and this might be a general feature of

et al., 2000).]

eukaryotic intracellular signal transduction networks.
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