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Abstract – We numerically study an equilibrium network model, generated via a graph
Hamiltonian, that exhibits a power-law degree distribution P (k)∼ k−γ with γ ≈ 1.5 in the
thermodynamic limit. While the degree exponent, γ, is equal to the one found in the Merging-
Creation (MC) model, we find that the detailed topological properties such as degree-degree
correlation and the modular structure differ significantly. We discuss the possible origin of these
differences.
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Recently, the ubiquity of complex networks has garnered
much attention. A complex network is one where nodes
(vertices) are connected by links (edges) in a nontrivial
fashion. Examples are technological networks such as the
Internet and the World-Wide Web (WWW), biological
networks such as the protein-protein interaction network
and metabolic networks, and social networks such as the
e-mail network [1–6], etc. Many such real networks have
completely different topological properties from tradi-
tional models of networks, most notably the canonical
random network of Erdös and Rényi [1,6,7]. One of the
most striking differences is that these real networks exhibit
a scale-free (SF) or power-law degree distribution P (k)∼
k−γ , unlike the ER random network [8]. This property
indicates a strong heterogeneity of connectivity in which
only a few nodes have many connections to other nodes
while the majority have a few. Empirical studies have
revealed that γ varies from network to network, but is
usually in the range 1.0< γ � 3 [1–6,9].
So far, much effort has been made in finding the

underlying mechanisms that give rise to SF networks with
2<γ � 3 and understanding their topology [1,2]. In
comparison, as reported in ref. [9], networks with γ < 2
have received less attention despite there being plenty
of examples such as the Gnutella [10], e-mail [11], coau-
thorship [12], ecological [13], and software networks [14].
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(b)E-mail: perturbation@gmail.com

Some authors have recently proposed models of network
generation based on the Merging-Creation (MC) process.
For instance, in one such model SF networks with γ < 2
are generated by mimicking the effect of the reusability
of software components [9,15–17]. In the MC model, the
evolution of degree k of each node can be mapped to the
evolution of mass m on each site in the mass aggregation
model without desorption which is known to gener-
ate a power-law mass distribution P (m)∼m−3/2 [18].
Therefore, in the simple MC process with ignorable
edge removal rate, the steady-state degree distribution is
expected to follow the same power law P (k)∼ k−3/2 [15].
It is important to note that the MC model as proposed

by Seyed-Allaei et al. [9] is a non-equilibrium model. The
model is composed of two processes at each step, i.e.
merging of two randomly selected nodes and creation of a
new node. In the merging process, self-connections and
multiple connections are not allowed: if the two nodes
to be merged are connected the link is removed, and
when they have common neighbors the multiple links
are replaced by a single link. In the creation process
the new node is connected to a pre-existing, randomly
chosen node. The creation rate is controlled so that it
balances the merging process, and thus it is of interest
to compare it with an equilibrium model where edges are
rewired, keeping the numbers of nodes and edges constant.
Since the most prominent feature of the MC model is the
degree distribution P (k)∼ k−3/2, we introduce a graph
Hamiltonian that leads to the same power-law degree
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(a) (b)

Fig. 1: (Colour on-line) Example of the (a) initial topology
and (b) rewiring process with N = 10 and 〈k〉= 4. The dashed
links in (b) are rewired. The new topology is accepted only if
∆H < 0 at T = 0.

distribution at ground state, and compare the topological
properties such as clustering coefficients and the degree-
degree correlations of the two models.
Our equilibrium network is as follows. It is composed

of N nodes connected by undirected edges. The corre-
sponding adjacency matrix a, where its element aij is
equal to 1 if nodes i and j are connected, and 0 other-
wise, is symmetric. The connectivity or degree k of node
i is defined as ki =

∑
j aij , and the total number of links

is L=
∑
i<j aij =Tr a

2/2. The average degree is therefore
〈k〉= 2L/N . Then we can define the partition function as

Z(T,N,L) =
∑
Ω(a)

δ

(
L− Tr a

2

2

)
exp [−βH(a)] , (1)

for any network Hamiltonian H(a) over all possible
permutations of adjacency matrix Ω(a). T represents the
temperature and β = 1/kBT is the inverse temperature
with Boltzmann constant kB . This follows the ensemble
approach that is often used as a methodology of generat-
ing networks [19–23]. In this report, we study specifically
the network ensemble defined via a graph Hamiltonian

H(a) =−J
∑
(ij)

kikj =−J
2

∑
i,j

aijkikj , (2)

where (ij) means connected pairs.
Imagine that we are tracking the changes in H(a) as

we follow an MC process. One can easily verify that
H(a) always decreases in the MC process when L stays
constant. Therefore, it is natural to ask if the MC model
is equivalent to, or share common topological properties
with, the equilibrium network defined by eq. (2) obtained
via rewiring.
In the following numerical simulations, for convenience

we focus only on networks generated using the Hamil-
tonian at T = 0, with parameters fixed at J = 1 and
kB = 1. The simulation proceeds as follows: We start from
a regular ring of N nodes, each connected to its 〈k〉 near-
est neighbors (see fig. 1(a)), and at each step we select
a link (i.e. a connected node pair) and an unconnected
node pair, and decide whether to rewire the link. The link
is rewired when the energy is lower at the new potential
configuration, i.e. if ∆H =Hrewired−Hcurrent < 0 (see
fig. 1). Otherwise, we keep the current topology. Note

Fig. 2: Collapsed plot of the degree distributions for various
network sizes, (a) N = 1000, 2000, 5000, and 10000, with fixed
〈k〉= 4, and (b) N increases according to the relation 〈k〉 ∝Nξ
with ξ = 1/3. From the insets we obtain (a) γ = 1.4± 0.3 and
(b) γ = 1.5± 0.3.

that, at a low temperature, when J > 0 low-degree nodes
would prefer to be connected to high-degree nodes for
lower energy. Thus, as we will see later, this leads to
a disassortative mixing of degrees [24]. On the other
hand, if J < 0, depending on the initial condition, the
initial network would not be rewired at T = 0 because
the rewiring always increases the energy, unlike the model
suggested in ref. [25].
In growing SF networks with γ < 2, the average degree

〈k〉 is related to N in a non-trivial way, i.e. 〈k〉 ∼Nξ. Then
ξ > 0 implies that the total number of links grows faster
than the number of nodes. This also leads to the structural
cut-off kc that diverges with N as [9]

kc ∼N (1+ξ)/2 ∼Nσ, (3)

where ξ is known to satisfy

ξ =
(2− γ)
γ

and σ=
1+ ξ

2
. (4)

In our equilibrium model, by contrast, 〈k〉 is in the initial
condition, and thus kc can be adjusted to satisfy any ξ
in 〈k〉 ∼Nξ. Therefore the first relation in eq. (4) is not
always valid in our model. If we fix 〈k〉 to be a constant
for all sizes of networks, then ξ = 0 and kc ∼N1/2 but still
γ ≈ 1.5 [26], as we see in fig. 2(a). Figure 2(a) shows N(k)
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for various N ’s with fixed 〈k〉= 4. Using the best fit of the
data to the function

N(k)∼ k−γ exp(−k/kc), (5)

we obtain kc(N)∼Nσ with σ= 1/2 (not shown). With
this exponent σ= 1/2, we find that the N(k)’s for various
N collapse well into a single curve as shown in fig. 2(a).
Then we find the thermodynamic limit (N →∞) of γ
via plotting γ(N) against 1/N (inset), yielding γ(N →
∞) = 1.4± 0.3. This confirms our claim that the first
relation in eq. (4) is not generally valid, and only a specific
value ξ = 1/3 can satisfy the relation when γ = 1.5. The
latter point can be checked via simulation as well: in a
network in which 〈k〉 ∼N1/3, from eqs. (3) and (4) we
expect that kc ∼N2/3 with σ= 2/3. As expected, with
this value N(k)’s for various N collapse well into a single
curve, shown in fig. 2(b). We also find γ(N →∞) = 1.5±
0.3 (inset). Therefore, the degree distribution P (k) (or
equivalently N(k)) of our model satisfies the same scaling
ansatz given in ref. [9], regardless of the applicability of
the first relation in eq. (4). For other values of ξ(> 0), we
obtain the same results (which is not shown).
To investigate the detailed structural properties of our

equilibrium model, we have also measured the clustering
coefficient and the degree-degree correlation. The clus-
tering coefficient C is known to give us a very impor-
tant clue regarding the hierarchical structure of network
modules. In a network with no hierarchical modular struc-
ture C shows no dependence on k, i.e. C(k) = const. On
the other hand, if the networks exhibits a well-defined hier-
archical modules, the clustering coefficient is a decreasing
function of k, e.g. C(k)∼ k−β , implying that the nodes
in smaller module tend to be more tightly connected to
one another [27]. The degree-degree correlation is another
important measure in characterizing the network struc-
ture. Depending on degree-degree correlation, networks
can be classified into two groups: networks with posi-
tive (negative) correlations are said to exhibit assortative
(disassortative) mixing [24]. Generally, social networks
obtained via one-mode projection from affiliation rela-
tions are assortative, while technological networks are
disassortative.
In fig. 3(a) we display the largest cluster of a sample

network of N = 50 nodes generated from our equilibrium
model. This example captures interesting properties of
the network topology generated by equilibrium model. As
expected from the definition of the equilibrium model,
the hubs show a strong tendency to be connected to low-
degree nodes, the characteristic feature of disassortative
networks. In the ground state, the biggest hub is connected
to all the other nodes which causes a star-like topology
similar to the model studied in ref. [19]. Since a true star
(with one central hub connected to all other degree-one
nodes) has a mean degree 〈k〉= 2, the remaining links
form yet smaller star-like structures also connected to
larger hubs to reduce the total energy. Then a hierarchy
of sorts between modules of differences emerge. Therefore,

(a)

(b)

(c)

Fig. 3: (Colour on-line) (a) The largest cluster in the equilib-
rium network sample of N = 50. (b) Plot of C(k) vs. k with
N = 10000. For k > 102, we fit the data to C(k)∼ k−β with
β ≈ 1.7. (c) 〈knn〉 decreases as k increases, indicating disassor-
tative degree mixing.

as outlined above, we can expect that 〈knn(k)〉 and C(k)
to decrease as k increases. First, C(k) of the equilibrium
model is shown in fig. 3(b). Here, we see a plateau
for k < 102, indicating the absence of hierarchy in that
range of k. However, for larger k (> 102), we find that
C(k) decreases and can be approximated by C(k)∼ k−β
with β ≈ 1.7 which indicates the existence of hierarchical
modules. This agrees with our näıve expectation based on
fig. 3(a). We also investigate the degree-degree correlation
by measuring 〈knn(k)〉, the average degree of the nearest
neighbors of the nodes having degree k, shown in see
fig. 3(c). 〈knn〉 clearly decreases as k increases, indicating
disassortative degree mixing or hub repulsion [24].
For comparison, we also measured the same quantities

for the simplest MC model of ref. [9]. As shown in fig. 4(a),
the network structure of MC model is visibly different
from that of the equilibrium model shown in fig. 3(a), even
though P (k) has the same form (eq. (5)). From fig. 4(b)
and (c), we find that both C(k) and 〈knn〉 increase as k
increases and then decrease for the largest k.
Qualitatively, this can be explained as the consequence

of the evolutionary rule of the MC model. In MC model,
at each time step two randomly chosen nodes are merged
into a single node, and a new node created then connected
to one of the existing nodes. Thus the evolutionary rule
of the MC model effectively has an aging dynamics via
which a node created at step t0 is chosen to merge,
on average, with another at time t with probability
proportional to ∆t= t− t0. This merging process affects
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(b)

(c)

(d)

Fig. 4: (Colour on-line) (a) Sample network topology of the
MC model. Plots of (b) C(k) and (c) 〈knn〉 against k. In
(d) we illustrate the loop creation by merging. Two filled circles
(left) are selected to merge into a single node (right). This
creates a loop.

the resulting topology of the networks in two crucial
ways. First, older nodes naturally gain more links than
younger ones, leading to the degree heterogeneity in the
form of a power-law degree distribution. Moreover, since
the merging process occurs between pre-existing nodes,
encouraging connections between older nodes. This leads
to an increasing 〈knn(k)〉 with increasing k. Second, the
merging of two nodes can create loops in the network
(fig. 4(d)). If we repeat the merging many times then the
density of the loops can increase. As a result, the old nodes
having more degrees can have larger clustering coefficient
(concerning loops of length three) than the young nodes
having smaller degrees. Therefore, similarly, C(k) is also
an increasing function of k in general.
The slight decreasing behavior 〈knn(k)〉 and C(k) near

kmax, however, indicates that for the emergence of hubs
of k� kmax very young, low-degree nodes play a crucial
role. Let τ be the average time it takes a newly born
node with initial degree k= 1 to be merged with another
node. Since merging and creation are balanced, τ ∝N .
The accumulative probability that a node created at t0
is selected to merge with a new node at time t is again

proportional to ∆t, which increases as k increases. As
a result, old nodes having degree k≈ kmax would have
merged with τ∆t∝N∆t newly born nodes of k= 1 on
average. Therefore, for large N , a sizable number of
degrees of a hub may have originated from merging with
k= 1 nodes. The decreasing behavior of C(k) and 〈knn〉
near k� kmax are the consequences of this dynamics. We
have also verified the effect of young nodes with modified
MC models incorporating preferential attachment [28].
We have introduced a network Hamiltonian model that

generates a power-law degree distribution with γ ≈ 1.5,
identical to the MC model. However, we find that the
detailed topological properties of the two models are
very different, indicating that the degree exponent γ is
merely one characteristic of a network (albeit an impor-
tant one) and is woefully insufficient as a general classifier
of networks1. We have argued that the differences in the
topological properties stem from how the MC networks
are generated, an evolutionary dynamics. Based on the
measurements of degree-degree correlation and clustering
coefficients, we expect that the modular structure found in
many real-world networks such as software networks [14]
can be better modeled via our equilibrium Hamiltonian
model. This also raises a question regarding the possible
origin of modularity in networks. The concept of modu-
larity is central in engineering and biology where a system
is often a composition of semi-independent, functionally
distinct parts (modules) [29]. It is widely believed that the
modularity in biological systems in particular is a result of
evolution. The fact that one can create modular networks
using a simple graph Hamiltonian rather than imagin-
ing a likely evolutionary process suggests the possibility
of alternative methodologies for studying modularity in
networks. We believe that such questions present future
opportunities for further studies including deep analytical
treatment.
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[8] Erdös P. and Rényi A., Publ. Math., 6 (1959) 290; Publ.
Math. Inst. Hung. Acad. Sci., 5 (1960) 17.

[9] Seyed-Allaei H., Bianconi G. and Marsili M., Phys.
Rev. E, 73 (2006) 046113.

[10] Jovanovic M., Annexstein F. and Berman K.,
Technical Report, University of Cincinnati (2001),
URL http://www.ececs.uc.edu/∼annexste/Papers/
scalabilityissues.ps.

[11] Ebel H., Mielsch L. I. and Bornholdt S., Phys. Rev.
E, 66 (2002) 035103(R).

[12] Newman M. E. J., Phys. Rev. E, 64 (2001) 016131.
[13] Montoya J. M., Pimm S. L. and Solé R. V., Nature,

442 (2006) 259.
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