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Fluctuation of incoming flux with multiplicative noise
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PACS. 05.70.Ln – Nonequilibrium and irreversible thermodynamics.

PACS. 89.75.Hc – Networks and genealogical trees.

PACS. 89.75.Da – Systems obeying scaling laws.

Abstract. – We study the influence of topology on the dynamical properties of a diffusion pro-
cess which can be described by a diffusion equation with multiplicative noise on a complex net-
work. From numerical simulations we find that the fluctuation of the incoming mass on a given
node of network scales with the average incoming mass, or flux, in a topology-dependent fashion.
By combining numerical results with the Langevin equation of the associated process, we show
that inhomogeneity of the underlying structure leads to the appearance of distinct dynamical
regions in the system and a crossover behavior in the scaling of fluctuations with average flux.

Nonequilibrium statistical mechanics has been an intensively studied subject [1,2], in var-
ious physical systems [3–10]. One example of nonequilibrium phenomena which has received
great attention in the last decade is self-organized criticality with potential relevance to the
scale-invariant features observed in many systems such as the sand pile model [11], river net-
works [12–14] and growth dynamics [5]. An early version of self-organized criticality was
proposed by Takayasu [15,16]. The model is believed to be relevant to economic systems be-
cause its diffusion process with aggregation, deposition and evaporation of particles resembles
the “efficiency” dynamics of competing agents in economic systems [17]. In many cases such
as population dynamics or wealth dynamics, it is more natural to assume that the amount of
diffusion can be described by the multiplicative noise [18]. Moreover, it is well known that the
diffusive systems with multiplicative noise can be characterized by generalized Levy-Pareto
distribution [18–21] and most of the previous works have been focused on the generation of
power law by multiplicative noise.

In order to make a direct comparison between a model system and empirical observations,
however, one should understand how the underlying interaction topology between agents af-
fects their dynamical behavior. The effects of the underlying topology of dynamical properties
such as relaxation time, the autocorrelation function and the return probability of random
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walkers have been recently studied [22,23]. It is especially known that diffusive particles con-
strained to move along the nodes and links of a scale-free network tend to agglomerate on the
high connectivity nodes or hubs [24]. Moreover, it has been found that the average number
of incoming walkers, 〈Hi〉, reaching a node i on a reasonably large time window τ � Tmax,
scales with the fluctuations around the average σ as σ ∼ 〈Hi〉α, where α = 1/2 if the total
number of walkers in the system does not fluctuate too much between different time win-
dows, and α = 1 otherwise [25] (〈· · ·〉 represents average over a time window τ and Tmax is
the observation time). Thus, the amplitude ∆W of the variations of the average number of
walkers in the system determines the value of the exponent α. It is important to understand
the relation between averages and the width of fluctuations, as the relative fluctuations of the
activity on a node can vary widely depending on such scaling. Since real-world systems often
have limited node capacity (such as traffic on highways, byte packets on the Internet router
and other), jamming and malfunctioning can result from unbounded fluctuations. Here we
show that, if the diffusive process is multiplicative and the underlying topology is intrinsically
inhomogeneous, there is a crossover from α = 1/2 to α = 1 on the 〈H〉 vs. σ curve even for
∆W = 0. While this crossover is evident for multiplicative diffusive processes on a scale-free
network, it does not appear on random Erdös-Rényi (ER) networks for which the connectivity
distribution is narrowly peaked at 〈k〉.

In the Takayasu model, a non-negative mass variable hi is assigned to each site i of a
lattice. At each time step the total mass of a randomly selected site l moves to one of its
nearest neighbors j and aggregates with rate 1 resulting h′

j = hj +hl. In addition, a unit mass
is deposited at a randomly chosen site with rate q [15,16]. Majundar et al. [17,26] generalized
the model by including desorption of a unit mass from a randomly chosen site with rate p and
showed that in the steady state the mass distribution P (h) follows a power law for q < qc(p)
and decays exponentially for q > qc(p), with [17,26]

qc(p) = p + 2 − 2
√

p + 1. (1)

In our study we assume that the amount of mass moving from a node i to one of its nearest
neighbors is a random fraction of the total mass at node i. Thus, we adopt the following set of
rules for the diffusive process: starting from a random initial distribution of mass hi at each
node i, i) a unit of mass is deposited at a randomly chosen site i with probability p/(p+q+1),
ii) a unit mass is removed from a randomly chosen site i with probability q/(p + q + 1), and
iii) a random fraction of mass from a randomly chosen site i moves to one of its (randomly
chosen) nearest neighbors j with probability 1/(p + q + 1).

We also define the flux h(t) at node i on time t as

Hi(t) =
τ∑

t′=0

hin
i (t + t′), (2)

where hin
i (t) is the incoming mass at time t and τ is the size of the time window representing the

level of coarse graining of the measurement time. Thus, we obtain for each node i a time series
{Hi(0),Hi(τ), · · · ,Hi(Tmax)}, where Tmax is the total observation time and Tmax 	 τ . We
simulated this process on a Barabási-Albert (BA) scale-free network [27] with N = 105 nodes,
setting the deposition and evaporation rates q and p to satisfy the conditions: i)

∑N
i Hi(t) →

const (steady-state condition) and ii) q � qc, with (p+q)/(p+q+1) = 0.1 (eq. (1)). Moreover,
as long as there is a diffusion, the scaling behavior is governed by it [28]. Only in the limit
that the diffusion rate goes to zero, the additive noise dominates the dynamics, and α → 1.
The total observation time Tmax and the measurement time window τ are set to 50000 and
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Fig. 1 – Plots for the diffusion-dominant region on SF networks((a)-(c)) and on ER networks((d)-(f)).
(a) and (d) show the measurement of fluctuations of incoming fluxes on a SF network and a random

network, respectively. Solid lines denote σ ∼ 〈H〉 and dotted lines represent σ ∼ 〈H〉1/2. (b) and
(e) average connectivity 〈k〉 as a function of average incoming flux 〈H〉. Note that in the ER graph,
the largest value of 〈k〉 is around 10, corresponding to the α = 1/2 region in SF networks. (c) and
(f) average incoming flux distribution. Solid squares (�) represent low-connectivity regions and open
circles (◦) denote high-connectivity regions.

100 Monte Carlo time steps, respectively. Averaging hi(t) over time and calculating σi for
each node i, we find that σ ∼ 〈H〉α, where α = 1/2 for small 〈H〉 values, and α = 1 for
large 〈H〉 (fig. 1(a)). As shown in ref. [24], high connectivity nodes are subject to more traffic
than low connectivity nodes are, the traffic fluctuations being amplified by the multiplicative
nature of the process, that is, the bigger the mass is, the larger the amount of mass transferred
to the nodes is, on the average. We check this by measuring the average connectivity 〈k〉 of
a node receiving an amount of mass 〈H〉, shown in fig. 1(b), confirming that hubs receive
more traffic. From figs. 1(a) and (b) one can find 〈k〉c, the value of k associated with the
value of 〈H〉 where the crossover occurs, and calculate the restricted distributions of mass
P (〈H〉)k<kc

and P (〈H〉)k>kc
. As depicted in fig. 1(c), these distributions differ fundamentally,

the low-connectivity (k < kc) distribution being much narrower than the high-connectivity one
(k > kc). It is this broad range in P (〈H〉)k>kc

that makes the average mass 〈H〉 scales linearly
with the mass fluctuations when 〈H〉 	 〈H〉c (ref. [25]). We verified this by repeating the
same experiment on a Erdös-Rényi (ER) random network. In this case the crossover disappears
(fig. 1(d)), the average mass scales weakly with connectivity (fig. 1(e)), and the restricted mass
distributions for low and high connectivity are both narrowly distributed (fig. 1(f)), which is
reflected in the α = 1/2 exponent measured over the whole range of 〈H〉 (fig. 1(f)).

From these numerical simulations we conclude that the topological differences between
scale-free and random networks lead to different dynamical behaviors. This can be accred-
ited to the multiplicative nature of the diffusive process, since simple diffusion on scale-free
networks leads to α = 1/2, as reported in ref. [25].

To gain a deeper understanding of the crossover observed on scale-free networks, we solved
the Langevin equation of the dynamical process by a mean-field approximation. Since, by
definition, the incoming flux is a random fraction of the nearest-neighbors’ mass, the incoming
flux is on average proportional to the mass at the nearest neighbors. The Langevin equation
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for the change of mass at node i during a unit time interval is

Hi (t + 1) = Hi (t) +
ki∑
j

1
kj

ηj (t) Hj (t) − ηi (t) Hi (t) + ξj(t), (3)

where the second term on the right-hand side represents the incoming mass from the nearest
neighbors and the third term the outgoing mass from node i during the unit time interval.
The last term represents fluctuations caused by deposition and desorption. Moreover, ηi(t) is
a random variable between the interval [0,1] and ξi(t) is assumed to be Gaussian white noise
uncorrelated both in space and time. This type of diffusion equation with multiplicative noise
has been studied in the context of stochastic Lotka-Volterra models, which can be character-
ized by the (truncated) Pareto or Lévy distribution P (H) ∼ H−1−µ [18–20]. Since we are
focusing only on the incoming mass in the diffusion dominant region, eq. (3) can be reduced to

Hi(t + 1) = Hi(t) +
ki∑
j

1
kj

ηj (t) Hj (t) . (4)

In the continuum limit we can approximate the change of incoming mass by

dH

dt
�

ki∑
j

1
kj

ηj (t) Hj (t) . (5)

The data in fig. 2 shows that the incoming flux distribution P (H) also has a long power law
decaying tail even when the outgoing flux is not considered. The value of the exponent µ is
known to depend on the details of the model’s parameters [18–20]. By least-square fitting, we
find the corresponding exponent to be −1 − µ � −3.3 in our model.

In order to obtain an approximate expression for H(t) we assume that
∑ki

j
1
kj

ηj(t)Hj(t) �
〈ki〉 1

〈knn〉 〈ηj(t)Hj(t)〉, where 〈knn〉 denotes the average degree of a node’s nearest neighbors.
Since ηj(t) and Hj(t) are independent variables, eq. (5) becomes

dH

dt
� 〈k〉

〈knn〉 〈η〉 〈Hnn〉 ≡ A(〈k〉) 〈Hnn〉 , (6)

where 〈Hnn〉 represents the average incoming mass on the nearest neighbors of the node. In
general, the average connectivity of the nearest neighbors of a given node can be expressed
as a function of connectivity of the chosen node, i.e. 〈knn〉 ∼ 〈k〉−ν . For the BA model ν
becomes 0 [29]. To express 〈Hnn〉 as a function of the incoming mass of a selected node, we
calculated 〈Hnn〉 numerically, as depicted in fig. 3.

As shown in fig. 3, 〈Hnn〉 decreases rapidly as 〈H〉 increases and then converges slowly to a
constant value. The crossover between the rapidly decaying region and the almost flat region
occurs around Hc � 108, and this value is consistent with the value obtained from fig. 1(a).
Based on the data in fig. 3, we approximated 〈Hnn〉 = const for H ≥ 108 and

〈Hnn〉 ≈
(

a +
b

c + H

)
, (7)

for H ≤ 108. Here a, b and c are the fitting parameters. Using least-square fitting we
obtained the value of the parameters a, b, and c as a = 4.52581 × 108, b = 5.7908 × 1015, and
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Fig. 2 – Plot of incoming flux distribution P (H). The slope of the solid line represents −1−µ � −3.3.

c = 2.58341 × 106. Equation (7) represents the fact that the large flux going into the nearest
neighbors of the selected node can decrease the flux coming into the selected node.

The calculation for H ≥ 108 with the approximation 〈Hnn〉 = const gives

〈H〉 ∼ 〈k〉 , (8)

and

σ ∼ 〈H〉 . (9)

Equation (8) indicates that the linear dependence of 〈k〉 on 〈H〉 for large 〈H〉 values in fig. 1(b)
comes from the nearly constant value of 〈Hnn〉, leading to the linear dependence of σ on 〈H〉,
or α = 1.

On the other hand, for 〈H〉 ≤ 〈H〉c, eq. (6) combined with the approximation (7) and the
conditions a/b � 1, exp[−(a2A/b)t] � 1 in the large-t limit and 〈H〉 ≥ 0, we obtain

H(〈k〉 , t) = D0 + D1e
−qt, (10)

and

〈H〉 =
1
T

T∑
t

H(〈k〉 , t) � D0 − D1

Tq

(
e−qT − 1

)
. (11)

Fig. 3 – Plot of 〈Hnn〉 against H. The inset shows 〈Hnn〉 for k ≤ 108 The solid line represents the
hyperbolic decaying function 〈Hnn〉 = a + b/(c + H).
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Here D0 = c

(
ac√

b(ac+b)
− 1

)
, D1 = b(ac+b)

a2c and q = a2A/b. Therefore, the fluctuation in the

incoming mass is given by

σ �
√

D2
1

2qT
(1 − e−2qT ) +

D2
1

T 2q2
(1 − e−qT ). (12)

In the limit T → ∞, the dominant term in eq. (12) scales with (1/T )1/2. From eq. (11),
we know that the average incoming flux 〈H〉 is proportional to (1/T ), and we conclude that
σ ∼ 〈H〉1/2, as expected.

In summary, we have studied a diffusion process reminiscent of Takayasu’s model on scale-
free and Erdös-Rényi networks. On this process, the number of particles on a given node
dictates how many particles will diffuse simultaneously from it. This type of process can be
described by a diffusion equation with multiplicative noise, generally characterized by Pareto
or Lévy distributions and is regarded as a model for systems such as population dynamics of
each species in a given region or stock exchange markets in the financial systems. Through
numerical simulations of the model, we found a nontrivial crossover between two different
scalings of the average number of incoming particles on a node 〈H〉 and fluctuations about the
average σ. We conclude that they occur due to the multiplicative nature of the process coupled
with the intrinsic inhomogeneity of the underlying scale-free topology. This result is also
verified by solving the Langevin equation of the process. Comparisons with a simpler, random
geometry show how topology affects dynamics, since this crossover is not present on the latter.
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