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Abstract. To understand how the jamming on real communication networks depends on node capacity,
we study the traffic model with heterogeneous node capacity. In this model, each movable packet takes
a biased random walk and the capacity of a node with degree k is given as C(k) ∼ kx with a tunable
parameter x. Each packet disappears when it arrives at the preassigned target node. We analytically and
numerically show that the transition from the free-flow phase to the jammed phase occurs when the balance
between the packet generations and removals is broken. The balance breaking condition for the jamming
is analytically determined by the competition between C(k) and the average number of packets on a node
of degree k, mf (k), in the free-flow phase. Based on the analytic arguments, we find that there exist three
different jamming patterns depending on C(k). The analytic conjectures for jamming patterns are verified
by numerical simulations.

1 Introduction

Due to the explosive growth of the global communication
networks for last two decades, such as the Internet [1]
and world-wide-web [2], understanding the dynamical pro-
cesses for the information flow over the networks becomes
more important than before. Such dynamical processes are
closely related to the navigability [3], the efficient infor-
mation searching algorithms [4–7], and the optimal rout-
ing strategy [8–15]. The navigability of network means
the ability to reach any given node starting from any
other node. To determine the navigability, a message (or
a packet) is produced at a randomly chosen node and for-
warded to an arbitrarily selected node with greedy algo-
rithm in general. In the information search, query packets
generated at any node explore the network until they find
the requested information according to a given packet for-
warding rule. In these studies, there is an important com-
mon dynamical process shared by the suggested models,
i.e., a packet generated on a node is forwarded to one of
its linked neighbors under a given dynamic rule, which
is generally referred as a routing rule. Therefore, under-
standing the packet forwarding rules is essential to study
the dynamical properties of information flow in real net-
works.

The packet forwarding rules can be classified into two
different types depending on the used information to move
a packet to a neighboring node. The first type of the
packet forwarding rule uses the global information, such
as the shortest path between the nodes [3,9], betweenness
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centrality [10], and optimal packet flow pattern [11]. Even
though this type of packet forwarding rule is the best one
among others, it may be practical for only small size of net-
works because of the increasing computational complex-
ity and resources. Additionally, in many real networks, ac-
quiring the global information of the underlying network is
limited because of, for example, incomplete sampling [16].
In order to avoid such difficulties the models based on the
local information are suggested as the other type of packet
forwarding rule. One of the most popular models for this
type of packet forwarding rule is the random walk. Due to
its theoretical importance and wide range of application,
various dynamical properties of random walks on complex
networks are well studied [17–19].

In real communication networks, there normally exist
huge number of packets on the network. At each time, new
packets are generated, then move toward the target nodes.
When the packet arrives at the target node, the packet is
removed. If the number of new generated packets does
not balance with that of removed packets, then the traf-
fic congestion occurs and sometimes the network loses its
function. Therefore, the traffic is a very important factor
to be considered to design and control the information flow
over the network. The traffic on the network is also closely
related to well-known physics problems. For example, we
have shown that the efficiency of the peer-to-peer network
protocol can be drastically improved by exploiting the dif-
fusive capture process for information search [6,7].

Recently, Wang et al. suggested a biased random walk
(BRW) routing model to find an optimal condition for the
local information based packet forwarding strategy [12,13].
In this model, each node has the same fixed capacity, C,
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which is the maximum number of simultaneously movable
packets on a node. At each time R packets are generated at
the randomly selected nodes. Each movable packet takes
BRW to one of the connected nodes of degree k with the
hopping probability proportional to kα. In addition they
applied the path iteration avoidance (PIA) rule to increase
the efficiency. Under the PIA rule a packet cannot visit
each link more than twice. From the numerical simula-
tions, they showed that the model undergoes a transition
from the free-flow phase to the jammed phase as R in-
creases. In addition, they also found that the transition
threshold, Rc, depends on α and becomes the maximum
when α = −1. Based on the analysis of the behavior of
Rc(α), they suggested that α = −1 is the optimal param-
eter for BRW routing model with PIA. Even though the
imposed PIA rule has practical implication by increasing
Rc, we find that it is not a relevant factor to determine
the transition pattern. BRW is also used to find the opti-
mal diffusion process on a network which maximizes the
entropy rate of the Markov chain [20–22]. The maximal-
entropy walk includes the limiting case of BRW routing
model with infinite capacity (C = ∞). In the maximal-
entropy walk, the optimal diffusion process is obtained
when α = 1 for uncorrelated networks, at which the walk-
ers are maximally dispersed on all possible paths.

However, in real networks, each node has different
packet forwarding capacity. Thus, it is very important
to understand how the heterogeneity in C affects on the
physical origin of jamming and how the jammed phase
occurs in the system as R increases. Therefore, in this pa-
per, we introduce the BRW routing model with topology-
dependent node capacity to study the effect of the het-
erogeneous capacity on the patterns of jamming. For this
purpose, we consider the degree-dependent node capacity,

C = C(k) = ckx. (1)

Here x is a tunable parameter and c is a constant. It is very
natural assumption because in many communication net-
works the nodes of the large degree belong to the (commer-
cial) service providers. In general such service providers
should have equipment of large capacity for reliable ser-
vice. From analytic arguments, we show that there are
three different jamming patterns depending on x and α.
When α + 1 > x we find that the jamming mechanism is
exactly the same as the condensation mechanism in the
zero range process on complex networks [23]. In contrast,
jamming patterns for α + 1 ≤ x show peculiar behaviors,
which have never been studied in any other traffic mod-
els. When α + 1 < x, we find that the congestion occurs
from the nodes with smallest degree as R increases. When
α + 1 = x, the stacking of the packets occurs over all the
nodes in the network for R > Rc. We verify all the analytic
results through the numerical simulations. The results do
not depend on the sign of x, i.e., x can be positive or neg-
ative. However, in the following simulations we show the
numerical results for x > 0 to explain the jamming pat-
terns on real networks as addressed above. In addition,
BRW routing model in references [12,13] corresponds to
the case of x = 0, thus the jamming pattern of BRW rout-

ing model with α = −1 is exactly the same with the case
of x = α + 1.

2 Traffic model

As explained in introduction, the traffic model considered
in this paper is nearly the same as that treated in ref-
erences [12,13]. Therefore, we briefly explain the traffic
model on networks for the clearness sake. In the model,
at each time step, we perform the three following pro-
cesses. (I) Generation process: R packets are generated
from randomly chosen nodes on the network and we as-
sign the destination node of each packet at random. (II)
Hopping process: let Ni be the number of packets on node
i with degree ki, and let Ci = �C(ki)� where �C(ki)� is the
largest integer which is less than or equals to C(ki) = ckx

i .
If Ni ≤ Ci at a given time t, then all packets on i are
movable. When Ni > Ci, Ci packets move and (Ni − Ci)
packets are stacked. To the selection of packets to move,
we apply the FIFO (first in first out) discipline [14,15].
Selected packets simultaneously move at t. Each movable
packet on a node i takes BRW with the hopping probabil-
ity Tij from i to one of the linked neighbors j [24–26] as:

Tij =
kα

j
∑ki

�=1 kα
�

. (2)

Here ki is the degree of node i and
∑ki

�=1 denotes the sum
over the linked neighbors of the node i. Since each node
can identify all of its neighbors, it can pass the packet
directly to the target if one of the linked neighbors is
the preassigned target node. (III) removal process: once
a packet arrives at its destination, it disappears from the
network.

BRWs depend on the parameter α. α = 0 means that
the walk reduces to normal random walks. α > 0 (<0)
means the walk prefers the node with higher degree (lower
degree). To analyze the dependence of physical origin of
the jamming patterns on Ci as emphasized in Introduc-
tion, we assume that Ci in our model depends on the
network topology, i.e., the degree ki of the node i, in a
variety of ways.

3 Node capacity and Jamming patterns

We now want to explain the dependence of jamming mech-
anisms on the node capacity Ci in the traffic model. To
reflect the traffic properties in the real system, we consider
the scale-free network (SFN) with the degree distribution
Pd(k) ∼ k−γ and the size N . We assign the capacity of
node i as Ci = C(ki) = ckx

i .
In order to analyze the traffic model on the base net-

work, the order parameter [27,28],

η(R) = lim
t→∞

1
R

〈ΔNp〉
Δt

, (3)

is used. Here, ΔNp = Np(t + Δt) − Np(t) and Np(t) rep-
resents the number of packets on the network at time t.
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〈. . .〉 indicates average over time windows of width Δt.
In the free-flow phase in which η(R) = 0, 〈ΔNp〉=0, i.e.,
Np(t) does not vary. Thus, the free-flow phase means a sort
of stationary state with the balance between generated
packets and removed packets [12]. In the free-flow phase,
the probability Pb(k) that a randomly chosen packet which
does BRW with equation (2) is found at a node with de-
gree k is [20,25]

Pb(k) =
kα+1

N 〈kα+1〉 . (4)

Pb(k) is the biased-random-walk centrality. Thus, the av-
erage number, mf (k), of packets on the nodes with degree

k in the free-flow phase becomes mf (k) = Npkα+1

N〈kα+1〉 . Since
Np should be proportional to R (or Np = ANR) in the
free-flow phase, mf (k) can be written as

mf(k) =
Npk

α+1

N 〈kα+1〉 = aRkα+1, (5)

where A is a proportional constant and a = A/
〈
kα+1

〉
.

However, as packets entering in the system increase
or R increases, the jammed phase, η(R) > 0, occurs for
R > Rc [12,13]. In the jammed phase the number of gen-
erated packets becomes unbalanced with that of removed
packets. The balance is determined by the node capacity
C(k). Thus, patterns of mechanisms for the jammed phase
should be analyzed by the competition between C(k) and
mf (k) as shown in Figure 1.

When C(k) > mf (k) on all nodes, any packet on any
node freely moves to its neighboring nodes, and sooner or
later it arrives at its destination node without jamming.
So, the number of generated packets balances with that
of removed packets in the steady state. Therefore, when
C(k) > mf (k) for any k, the state is in the free-flow phase.
In contrast, when C(k) < mf (k) for a certain k, some
packets on the node with degree k cannot move and such
immovable packets should be stacked on the node. These
stacks make 〈ΔNp〉 > 0, i.e., the jammed phase (η(R) >
0). Therefore, one can classify jamming patterns by the
comparison between C(k) and mf (k) as shown in Figure 1.

We first consider the case of α + 1 > x as shown in
Figure 1a. The degree k of the SFN with the size N is
in the interval [kmin, kmax]. Here kmin is the minimum de-
gree which does not depend on N . kmax is the maximum
degree in the network which scales as kmax ∼ N1/(γ−1)

if we do not impose any artificial cutoff [29]. As R in-
creases in the free-flow phase, the average packet num-
ber mf (k)(=aRkα+1) on the nodes with degree k in-
creases. When R reaches to the threshold, Rc, mf (k)
first meets C(k) at kmax as shown in Figure 1a. Thus,
the jammed phase begins to occur when R satisfies the
relation mf (kmax) = aRkα+1

max = C(kmax) = ckx
max or

R = Rc = ca−1kx−α−1
max . When R = R+

c (or R → Rc from
above), the jamming occurs only on the node with degree
kmax (hub node), because the condition C(k) > mf (k)
that any packet on the node freely moves first breaks on
the hub node. Since kmax ∼ N1/(γ−1), the critical value of

Fig. 1. The schematic illustrations for jamming patterns (a)
when α + 1 > x, (b) when α + 1 < x, and (c) when α + 1 = x.
Solid line denotes the mf (k) for a given R and dash-dotted
(blue) line denotes the node capacity, C(k). “Jam.” means the
range of k in which jamming occurs for a given R(> Rc).

R, Rc, depends on N as

Rc(N) ∝ Nβ

(

β =
x − α − 1

γ − 1

)

. (6)

The jammed phase in which η has non-zero value occurs
for R > Rc. When R > Rc, jamming occurs on the nodes
with degree k ≥ k> as shown in Figure 1a. Here k> is
the smallest value of k at which jamming occurs. On the
nodes with degree k ≥ k>, the free BRW condition C(k) >
mf(k) breaks. k> depends on N and R in the complex
way, because the number of jammed packets on the nodes
with k ≥ k>,

∑kmax
k>

m(k), is not known. Here, m(k) is
the average number of packets on the nodes with k. In
contrast, the jamming does not occur on the nodes with
k < k>. Therefore, in the case of α + 1 > x, the jamming
pattern is that the jamming for a given R(>Rc) occurs on
the nodes with k ≥ k>(R) or with the higher degree.
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In the case of α + 1 < x shown in Figure 1b, the jam-
ming pattern is changed. In this case, when R reaches Rc

from the free-flow phase, mf(k) first meets C(k) at kmin as
illustrated in Figure 1b. Thus, the jammed phase begins to
occur when R satisfies the relation mf (kmin) = aRkα+1

min =
C(kmin) = ckx

min or R = Rc = ca−1kx−α−1
min . Since kmin

does not depend on the size N , Rc does not depend on
N . When R = R+

c , the jamming occurs on the nodes
with degree kmin, because the condition C(k) > mf (k)
breaks on the nodes with degree kmin. The jammed phase
in which η has non-zero value occurs for R > Rc as in
the case of α + 1 > x. When R > Rc, jamming occurs
on the nodes with degree k ≤ k< as shown in Figure 1b.
Here k< is the largest degree at which jamming occurs.
On the nodes with degree k ≤ k<, the free BRW condi-
tion C(k) > mf (k) breaks. In contrast, the jamming does
not occur on the nodes with k > k<. k< also depends
on N and R in the complex way because the number of
jammed packets on the nodes with k ≤ k<,

∑k<

kmin
m(k), is

also not analytically tractable as in the case of α + 1 > x.
Therefore, in the case of α + 1 < x, the jamming pattern
is that the jamming for a given R(> Rc) occurs on the
nodes with k ≤ k<(R) or with the lower degree.

Finally, we illustrate the jamming pattern for the case
of α + 1 = x in Figure 1c. The jammed phase begins to
occur when R satisfies the relation mf (k) = aRkα+1 =
C(k) = ckx or R = Rc = ca−1. Therefore, Rc does not
depend on kmin, kmax, and N . Unlike the cases of x > α+1
and x < α+1, the condition C(k) > mf (k) simultaneously
breaks on all nodes (or for all k) and the jamming also
begins to occur on all nodes when R = R+

c . For R > Rc,
packets are also stacked on any node. Therefore, in the
case of α+1 = x, the jamming pattern is that the jamming
for a given R(> Rc) simultaneously occurs on all nodes.

4 Confirming simulations

To confirm the jamming patterns suggested in the pre-
vious section, we perform the simulation for the traffic
model on the SFN. In the following simulations we use
Barabási and Albert (BA) network with the average de-
gree 〈k〉 = 10 and kmin = 5 as a underlying topology [30].
BA network has the degree distribution Pd(k) ∼ k−γ with
γ = 3. We also check our results using SFNs with other
γ’s and find nearly the same results as those on BA net-
work. Used network sizes are N = 104, 2 × 104, 4 × 104

and 8 × 104. We average the simulation data over 3000
realizations of SFNs with a given N .

4.1 Jamming in the case of α + 1 > x

In Figure 2, we show the simulation results for the traffic
model with (c = 20, x = 0, α = 0) and (c = 20, x =
1/4, α = 1/2), respectively, to justify the conjectured
jamming pattern for α + 1 > x. The obtained η(R)’s
are displayed in the insets of Figures 2a and 2b, which
are nearly identical to that in references [12,13]. η(R)
from the simulation confirms well the transition from the
free-flow phase (η(R) = 0) for R < Rc to the jammed

phase (η(R) > 0) for R > Rc. Since Rc(N) � Nβ

(β = (x − α− 1)/(γ − 1)) from equation (6), η(R) should
scale with N as η(R) = f(R/Nβ). For the network with
γ = 3, we obtain β = −1/2 if (x = 0, α = 0), and
β = −5/8 if (x = 1/2, α = 1/4). As shown in Fig-
ures 2a and 2b, the simulation results confirm the scaling
of η(R) very well and the conjectured jamming pattern in
Section 3.

We also measure the average number m(k) of packets
for R � Rc(N) at t = 10N as the insets of Figures 2c
and 2d. Except for k = kmax, measured m(k)’s satisfy
m(k) = mf (k) ∝ kα+1 = k1 when α = 0, and m(k) =
mf(k) ∝ k3/2 when α = 1/2. The results show a good
agreement with equation (5). If the conjectured jamming
pattern in the case of α+1 > x is right, jamming appears
at k = kmax for R � Rc. The insets of Figures 2c and 2d
also clearly show that the jamming occurs on the node
with k = kmax when R � Rc. Since the jamming occurs
on the node with k = kmax at R � Rc(N), m(k) scales
as m(kmax) = mf (kmax) = aRc(N)kα+1

max ∼ cNx/(γ−1) for
k = kmax, and m(k) = mf (k) = aRc(N)kα+1 ∼ cNβkα+1

for k < kmax. From these relations, we expect that m(k)
would scale with N as:

m(k) = Nx/(γ−1)g
(
k/N1/(γ−1)

)
, (7)

at R � Rc. Here the function g satisfies

g
(
k/N1/(γ−1)

)
= const. for k = kmax

and

g
(
k/N1/(γ−1)

)
∼

[
k/N1/(γ−1)

]α+1

for k < kmax.

Thus, for (x = 0, α = 0) m(k) scales as m(k)/N0 ∼
cN−1/2k1 when k < kmax, and m(kmax)/N0 = const.
when k = kmax as shown in Figure 2c. Similarly, for (x =
1/4, α = 1/2) m(k) satisfies m(k)/N1/8 ∼ c(N−1/2k)3/2

when k < kmax, and m(kmax)/N1/8 = const. when k =
kmax as in Figure 2d.

This jamming pattern at R = R+
c is exactly the

same as the condensation on the hub node in the zero
range process (ZRP) on SFN [23], because m(k) in ZRP
is the same as that in the insets of Figures 2c and 2d.
In ZRP, if the given number Np of particles is larger
than

∑kmax
k=kmin

mf (k), then the excess number of particle,
Np − ∑kmax

k=kmin
mf (k), condenses on the hub node. This

mechanism of condensation in ZRP is exactly the same
jamming mechanism of the traffic model on SFNs.

In Figures 2e and 2f, we show the time dependence of
measured m(k) at R � Rc (or R = R+

c ) on the SFN with
N = 104. Except m(kmax), m(k) does not vary with the
time t and m(k) = mf (k). In contrast, m(kmax) increases
with t, because jamming occurs only on the hub node
and the jammed packets increases with t. To confirm the
jamming pattern for R > Rc, we measure m(k) for R > Rc

(see Figs. 2g and 2h). As expected the jamming occurs on
the nodes with degree k ≥ k>. In contrast, the jamming
does not occur and m(k) scales as kα+1 on the nodes with
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Fig. 2. Simulation results for α + 1 > x. (a), (c), (e), and (g) are the case of (α = 0, x = 0, c = 20). (b), (d), (f), and
(h) correspond to the case of (α = 1/2, x = 1/4, c = 20). (a), (b) The scaling plots of η against R/Nβ with (a) β = −1/2 and
with (b) β = −5/8. Insets: measured order parameter η against R. Obtained Rc’s are (a) Rc = 5, 4, 3, 2 and (b) Rc = 6, 4, 3, 2
for N = 104, 2 × 104, 4 × 104, 8 × 104. (c), (d) The scaling plots of m(k). Insets: Measured m(k) for R � Rc at t = 10N . Solid
lines represent the relation, C(k) = 20kx. (e), (f) The plots of m(k) against k for N = 104 with (e) R = 5 and (f) R = 6 at
t = 104, 2×104, 5×104, and 105. (g), (h) Plots of m(k) against k for N = 104 with (g) R = 5, 10, 20, 40 and (h) R = 6, 10, 15, 20.
On the nodes with the degree k < k>, m(k) shows the behavior with m(k) � mf (k) ∼ kα+1. In contrast, jamming occurs on
the nodes with k ≥ k>. k> decreases with R(> Rc).

k < k>. Thus, the conjectured jamming pattern for the
case of α + 1 > x in the previous section is confirmed by
the simulations of the traffic model with (α = 0, x = 0)
and (α = 1/2, x = 1/4). We also verify the conjectured
pattern for α + 1 > x by the simulations of the models
with (α = 0, x = 0.5) and (α = 1, x = 0.5). If this type
of jamming pattern arises in the real network traffics, we
should enhance the capacity C(k) of the nodes with higher
degree or k ≥ k> to avoid the jamming.

4.2 Jamming in the case of α + 1 < x

In Figure 3 we show the simulation results for the traf-
fic model with (α = 0, x = 3/2, c = 0.1) and

(α = −1/2, x = 1, c = 0.2). The results show a good
agreement with the conjectured jamming patterns in the
case of α + 1 < x. As in the case of α + 1 > x, η(R)’s in
Figures 3a and 3b show the transition from the free-flow
phase to the jammed phase. Rc obtained from the sim-
ulation does not depend on N . This result supports the
conjecture Rc = ca−1kx−α−1

min in Section 3, because kmin

does not depend on N . From the best fit of the relation
mf(k) = aRkα+1 to the data in the insets of Figures 3c
and 3d, we obtain a = 0.008(1) for (α = 0, x = 3/2) and
a = 0.04(1) for (α = −1/2, x = 1), respectively. When the
value of R is fixed, large value of a means that Np becomes
large by the definition of a. Therefore, larger value of a
provides smaller value of Rc. This can be verified by the
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Fig. 3. Simulation results for α + 1 < x. (a),(c),(e), and (g) are the case of (α = 0, x = 3/2, c = 0.1). (b),(d),(f), and
(h) correspond to the case of (α = −1/2, x = 1, c = 0.2). (a), (b) The plots of order parameter η against R. Measured Rc’s are
(a) Rc = 26(1) and (b) Rc = 10(1), regardless of N . The plots of m(k) for (c) R = 26 and (d) R = 10 at t = 10N . Solid lines
denote (c) C(k) = 0.1 × k1.5 and (d) C(k) = 0.2 × k. Insets: obtained m(k) for N = 104 with (c) R = 5, 10, 15 (< Rc), and (d)
R = 3, 5, 7 (< Rc). (e),(f) The plots of m(k) against k for N = 104 at t = 104, 2× 104, 5× 104, and 105 with (e) R = 26 and (f)
R = 10. (g),(h) The plots of m(k) against k at t = 105 for N = 104 with (g) R = 50, 500, 5000 and (h) R = 10, 100, 1000. On
the nodes with the degree k > k<, m(k) shows the behavior with m(k) � mf (k) ∼ kα+1. In contrast, jamming occurs on the
nodes with k ≤ k<. k< increases with R(> Rc).

estimation of Rc through the analytic expression of Rc and
numerical simulations. Using a = 0.008(1) and kmin = 5
for (α = 0, x = 3/2, c = 0.1), the theoretical value of Rc

from Rc = ca−1k
1/2
min is obtained as Rc = 28(2), which is

identical to the measured Rc � 26(1) from η(R) within the
estimated errors. Similarly, for (α = −1/2, x = 1, c = 0.2)
we estimate Rc = 11(2) from the analytic conjecture,
which also coincides with the numerically obtained value
Rc � 10(1) within the estimated errors. Furthermore,
η(R) for any R is the same regardless of N .

Figures 3c and 3d show the measured m(k) at R �
Rc. If the conjectured jamming pattern in the case of
α + 1 < x is right, jamming for R � Rc appears around

k = kmin = 5. In Figures 3c and 3d jamming occurs
for k � 5, which agrees with the theoretical expectation
for R � Rc. Except for k � 5, measured m(k)’s satisfy
the theoretical conjecture, m(k) = mf (k) ∝ kα+1 (see
Eq. (5)). Figures 3e and 3f show the time dependence of
measured m(k)’s at R � Rc on the SFN with N = 104.
Except m(k) for k � 5, m(k) does not vary with time t
and m(k) = mf(k). In contrast, m(k) for k � 5 increases
with t, because jamming occurs on the nodes with degree
k = 5 and the jammed packets increase with t.

In Figures 3g and 3h we show the measured m(k)’s
for R > Rc. As expected the jamming occurs only on
the nodes with degree k ≤ k<. In contrast, the jamming
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Fig. 4. Simulation results for the case of α + 1 = x. (a), (c) and (e) show the results for (α = 0, x = 1, c = 0.2). (b), (d) and (f)
correspond to the case of (α = −1/4, x = 3/4, c = 0.133). (a),(b) The plots of order parameter η against R. Obtained Rc from
η(R) is (a) Rc = 24(1) and (b) Rc = 54(2), regardless of N . (c),(d) The plots of m(k) against k with N = 104 for (c) R = 24
at t = 105, 1.5 × 105, 2 × 105, 2.5 × 105, and (d) R = 54 at t = 104, 2 × 104, 5 × 104, 106. Solid lines denote (c) C(k) = 0.2 × k
and (d) C(k) = 0.133 × k3/4. Insets: Measured m(k) for (c) R = 5, 10, 15(< Rc) and (d) R = 20, 30, 40(< Rc) with N = 104 at
t = 105. m(k) for R < Rc satisfies the relation (c) m(k) = mf (k) = aRk and (d) m(k) = mf (k) = aRk3/4. (e),(f) The plots of
m(k) against k for N = 104 with (e) R = 30, 35, 40(> Rc) and (d) R = 55, 65, 75(> Rc) at t = 105.

does not occur and m(k) scales as kα+1 on the nodes with
k > k<. Thus, we verify the conjectured jamming pattern
for the case of α+1 < x in Section 3 through the numerical
simulations with (α = 0, x = 3/2) and (α = −1/2, x = 1).
If this type of jamming pattern arises in the real network
traffic, the capacity C(k) of the nodes with lower degree
or k ≤ k< should be enhanced more to avoid the jamming.

4.3 Jamming in the case of α + 1 = x

Finally, to confirm the conjectured jamming pattern for
α + 1 = x, we also perform the simulations with (α =
0, x = 1, c = 0.2) and (α = −1/4, x = 3/4, c = 0.133).
η(R)’s in Figures 4a and 4b show the transition from the
free-flow phase to the jammed phase as R increases. Rc’s
estimated from η(R)’s in Figures 4a and 4b are Rc = 24(1)
for (α = 0, x = 1) and Rc = 54(2) for (α = −1/4, x =
3/4). The value of Rc does not depend on N as in the
case of α + 1 < x. Measured Rc’s are nearly equal to the
theoretical values Rc � 25(3) for (α = 0, x = 1) and Rc �
53(1) for (α = −1/4, x = 3/4). The theoretical values are
obtained from Rc = ca−1 with (c = 0.2, a = 0.008(1)) and
(c = 0.133, a = 0.0025(1)), respectively.

Figure 4c shows m(k) with (α = 0, x = 1) for R =
24(� Rc) and N = 104 at t = 105, 1.5 × 105, 2 × 105,
and 2.5 × 105. Unlike the cases of x > α + 1 and x <
α+1, the condition C(k) > m(k) breaks on all nodes and
the jamming occurs on all nodes. The stacked packets on
all nodes increase as t increases. m(k) thus increases for
all k with t. In contrast, m(k)’s for R < Rc satisfy the
relation m(k) = mf (k) = aRkα+1 very well as shown in
the insets of Figure 4c. The data in Figure 4d for (α =
−1/4, x = 3/4) shows the same behavior as for the case in
Figure 4c.

This jamming pattern also occurs for R > Rc as shown
in Figures 4e and 4f. As R increases, m(k) for all k in-
creases. For R > Rc, the increment of m(k) is nearly the
same for all k except for k � kmin. The anomalous in-
crement for k � kmin in Figures 4e and 4f is originated
from the large fluctuation of the stacked packets due to
the small node capacity C(k � kmin). Thus, the simula-
tion results with (α = 0, x = 1) and (α = −1/4, x = 3/4)
verify the conjectured jamming pattern for the case of
α + 1 = x in the previous section. We also confirm the
conjectured pattern for α +1 = x by the simulations with
(α = −1, x = 0) and (α = 1, x = 2). If this type of
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jamming pattern arises in the real network traffic, the ca-
pacity C(k) of all nodes should be enhanced more to avoid
the jamming.

5 Summary

We study the jamming patterns in the traffic model in
which each movable packet hops to one of the neighboring
nodes with probability proportional to kα and disappears
at the target node. Since the packet forwarding capacity of
a node is closely correlated to the underlying topology in
real communication network, we assign the node capacity
to the node with degree k as C(k) ∼ kx. The effect of C(k)
on the jamming pattern is investigated. In this model,
we can exactly determine the jamming patterns from the
competition between the node capacity, C(k), and the av-
erage number of packets on a node, mf (k), in the free-flow
phase. From the analytic arguments, we find that there are
three different jamming patterns depending on C(k) and
mf (k). When α + 1 > x, the jamming pattern is that the
jamming for a given R(> Rc) occurs on the nodes with
k ≥ k>(R) or with the higher degree. The order parameter
scales as η(R) = f(R/Nβ) (β = (x − α − 1)/(γ − 1)). Es-
pecially, at R = R+

c , the traffic congestion begins to occur
on the hub node with k = kmax and mf (k) ∼ cNβkα+1.
The jamming pattern at R = R+

c is the same as the con-
densation in zero range process [23] on complex networks.
In contrast, when α + 1 < x, the jamming pattern is that
the jamming for a given R (>Rc) occurs on the nodes
with k ≤ k<(R) or with the lower degree. On the other
hand, when α + 1 = x, the packets are stacked on all
nodes in the network if R > Rc. These specific jamming
patterns depending on the heterogeneous node capacity
C(k) = ckx have never been suggested in the researches
of traffic model.

These results provide a complete set of scenario to un-
derstand how the jamming occurs in real communication
networks and how the traffic congestion spreads over the
network as R increases. Therefore, in practice, our results
can be directly applied to the prediction of the traffic con-
gestion and can suggest wise ways to avoid the traffic jams
in the real communication networks by specifying vulner-
able nodes to increase their capacities.
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