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Numerical Differentiation Taylor Expansion

Taylor Expansion

One basic tool that we will use in this class.

Taylor expansion of a function f(x) around a point x0

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) + · · · (1)

Taylor expansion of a mutivariable function f(x, y, · · · ) around a point
(x0, y0, · · · )

f(x, y, · · · ) = f(x0, y0, · · · ) + (x− x0)fx(x0, y0, · · · )
+(y − y0)fy(x0, y0, · · · ) + · · ·
+ (x−x0)2

2! fxx(x0, y0, · · · )
+ (y−y0)2

2! fyy(x0, y0, · · · )
+ (x−x0)(y−y0)

2! fxy(x0, y0, · · · ) + · · ·
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Numerical Differentiation First-Order Derivative

First-Order Derivative: Single Variable, Two-Point Formula

From the high school definition of the first-oder derivative.

f ′(xi) = lim
∆x→0

f(xi + ∆x)− f(xi)

∆x
= lim

∆x→0

∆fi
∆x

(2)

i+1

f’(x)

Approximated
f’(x)

x
x xx x

0 i i+1 N

f(x)

if(x )

f(x    )

Soon-Hyung Yook Numerical Calculus May 3, 2016 4 / 34



Numerical Differentiation First-Order Derivative

First-Order Derivative: Single Variable, Two-Point Formula

Or more exactly, from the Taylor series (Eq. (1))

Let ∆x = h.

First order derivative: Two-Point Definition

dfi
dx

= f ′i =
fi+1 − fi

h
+O(h2) (3)

Accumulated Error

For each step the largest error is proportional to h2.

At the end of the interval [x0, xN ], m steps of derivative has been made.

The accumulated error becomes

m∑
i

h2 = mh2 =
xN − x0

h
h2 = (xN − x0)h = O(h)
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Numerical Differentiation First-Order Derivative

Example: d sin(x)/dx

Design for the visualization
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Numerical Differentiation First-Order Derivative

Improved Method: Three-Point Definition

Again from the Taylor series:

f(x+ h) = f(x) + f ′(x)h+
1

2
f ′′(x)h2 +

1

6
f ′′′(x)h3 + · · · (4)

f(x− h) = f(x)− f ′(x)h+
1

2
f ′′(x)h2 − 1

6
f ′′′(x)h3 + · · · (5)

From Eq. (4) and Eq. (5)

f(x+ h)− f(x− h) = 2f ′(x)h+O(h3) (6)

Therefore,

Three-Point Definition

f ′(xi) =
f(xi + h)− f(xi − h)

2h
+O(h3) (7)

Accumulated error: O(h2)
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Numerical Differentiation First-Order Derivative

Homework

Find the first order derivative numerically

f(x) = x2

in the interval x ∈ [−2, 2] using both two-point and three-point definitions.
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Numerical Differentiation Second Order Derivative

Second Order Derivative

Again from the Taylor series for f(x), add Eq. (4) and Eq. (5)

f(x+ h)− 2f(x) + f(x− h) = h2f ′′(x) +O(h4) (8)

Therefore,

Second Order Derivative:Three-Point Definition

f ′′(xi) =
f(xi + h)− 2f(x) + f(xi − h)

h2
+O(h2) (9)

Example: Find d2 sin(x)
dx2 .
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Numerical Differentiation Second Order Derivative

Homework

Find the second order derivative numerically

f(x) = x2

in the interval x ∈ [−2, 2].
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Numerical Integration

Numerical Integration

Not all integrations are carried out analytically.
Ex. integrals including erf(x), Γ(x), etc.
⇒ the results should be found numerically.

Definite Integral

I[a,b] =

∫ b

a

f(x)dx (10)

for simply assume that f(x) > 0 for x ∈ [a, b] then I[a,b] is just the area
enclosed by f(x) [high school definition].

I : area

x
a b

ab

f(x)
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Numerical Integration

Basic Idea

Devide the interval [a, b] into N sclices.

For convenience, the width of each slice is identical, i.e. evenly spaced with
intherval h.

If we label the position (or the data points) as xi, with i = 1, 2, · · · , N , the
integral Eq. (10) can be expressed as s summation of integrals over each slice.

Basic Idea ∫ b

a

f(x)dx =

N−1∑
i=0

∫ xi+1

xi

f(x)dx (11)

Find a numerical scheme that evaluates the summation over each slice.
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Numerical Integration Rectangular Method

Rectangular Method

i−1

xi−(1/2)

x
i−

(1
/2

)

x
a b

f(x)

xix

f(
  
  
  
  
  
)

The most intuitive method

For simplicity, let all subinterval has equal
size, h = xi − xi−1.

Divide the intreval [a, b] into N subintervals:
Nh = b− a.

Let f̄i ≡ 1
h

∫ xi
xi−1

f(x)dx.

Then

Rectangular Method

I[a,b] =

∫ b

a

f(x)dx =

N∑
i=1

∫ xi

xi−1

f(x)dx = h

N∑
i=1

f̄i. (12)

For slow varying function f̄i ≈ f(xi−1/2) where xi−1/2 = (xi−1 + xi)/2.
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Numerical Integration Rectangular Method

Rectangular Method–Error Estimation

Contribution of each interval

I[xi−1,xi] =

∫ xi

xi−1

f(x)dx ≈ hfi−1/2

f(x) = fi− 1
2

+ f ′i− 1
2
(x− xi− 1

2
) +

1

2
f ′′i− 1

2
(x− xi− 1

2
)2 +

1

3!
f ′′′i− 1

2
(x− xi− 1

2
)3 + · · ·

∫ xi

xi−1

f(x)dx = fi− 1
2

∫ xi

xi−1

dx + f ′i− 1
2

∫ xi

xi−1

(x− xi− 1
2
)dx

+
1

2
f ′′i− 1

2

∫ xi

xi−1

(x− xi− 1
2
)2dx

+
1

3!
f ′′′i− 1

2

∫ xi

xi−1

(x− xi− 1
2
)3dx+ · · ·
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Numerical Integration Rectangular Method

Rectangular Method–Error Estimation

Thus,

∆I[xi−1,xi] =

∫ xi

xi−1

f(x)dx−
∫ xi

xi−1

f ′i− 1
2
dx

=

∫ xi

xi−1

f(x)dx− hf ′i− 1
2

≈ 1

2
f ′′i− 1

2

∫ xi

xi−1

(x− xi− 1
2
)2dx

For over all interval [a, b]

∆I[a,b] =

∫ b

a

f(x)dx− I[a,b] ≈
b− a

24
h2f ′′(ξ) =

(b− a)3

24N2
f ′′(ξ)

where f ′′(ξ) is the average value of the second derivative of f(x)
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Numerical Integration Rectangular Method

Rectangular Method–Example

∫ π

0

sin(x)dx
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Numerical Integration Rectangular Method

Homework

Integrate
f(x) = exp(x)

over the interval x ∈ [0, 2.5] using the rectangular method.
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Numerical Integration Trapezoidal Method

Trapezoidal Method

i−1
x

a b

f(x)

xx i

Simply replace the rectangles by trapezoids.

Or simply from the Taylor series ,Eq. (1),

f(x) = f(xi) + (x− xi)f ′(xi) +O(h2) (13)

Replace f ′(xi) by f(xi+1)−f(xi)
h , then

f(x) ' f(xi) + (x− xi)
f(xi+1)− f(xi)

h
(14)

Integrate over every interval with this linear function to obtain

Trapezoidal Method

I[a,b] =
h

2

N−1∑
i=0

(f(xi) + f(xi+1)) +O(h2) (15)
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Numerical Integration Trapezoidal Method

Trapezoidal Method–Example

∫ π

0

sin(x)dx
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Numerical Integration Trapezoidal Method

Homework

Integrate
f(x) = exp(x)

over the interval x ∈ [0, 2.5] using the trapezoidal method.
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Numerical Integration Simpson’s Rule

Simplson’s Rule

If all interval have the same length, i.e.,

xi+1 − xi = h = const., ∀i,

to improve the accuracy (from the Taylor series (Eq. (1)))

I[xi−1,xi+1] =

∫ xi+1

xi−1

f(x)dx

= fi

∫ xi+1

xi−1

dx+ f ′
∫ xi+1

xi−1

(x− xi)dx+
1

2
f ′′i

∫ xi+1

xi−1

(x− xi)2dx

+
1

3
f ′′′i

∫ xi+1

xi−1

(x− xi)3dx

= 2hfi + 0 +
1

2
f ′′i

2

3
h3 + 0 +O(h5) (16)
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Numerical Integration Simpson’s Rule

Simplson’s Rule

Now use the discretized second order derivative (Eq. (9))

f ′′i =
d2f(x)

dx2

∣∣∣∣
x=xi

=
1

h2
(fi+1 − 2fi + fi−1) .

Then Eq. (16) can be rewritten as

I[xi−1,xi+1] = 2hfi +
1

3
h (fi+1 − 2fi + fi−1) +O(h5)

=
h

3
(fi+1 + 4fi + fi−1) +O(h5) (17)

Simpson’s Rule

I[a,b] =

N/2−1∑
i=0

h

3
(f2i + 4f2i+1 + f2i+2) (18)
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Numerical Integration Simpson’s Rule

Simpson’s 3/8 Rule

Simpson’s 3/8 Rule (Newton-Cotes formula with n = 3)∫ b

a

f(x)dx =

N/3∑
i=1

3h

8
(fi + 3fi+1 + 3fi+2 + fi+3) (19)

Verification of Simpson’s 3/8 rule: Let an integral of any function f(x) over an
interval [a, a+ 3h] can be approximated as∫ a+3h

a

f(x)dx ≈ c0f(a) + c1f(a+ h) + c2f(a+ 2h) + c3f(a+ 3h)

Replace x by x− a− 3h
2 then∫ 3h

2

− 3h
2

f(x)dx = c0f

(
−3h

2

)
+ c1f

(
−h

2

)
+ c2f

(
h

2

)
+ c3f

(
3h

2

)
(20)
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Numerical Integration Simpson’s Rule

Simpson’s 3/8 Rule

Since there are four unknowns, c0, c1, c2, c3, we need four equations to obtain the
unknown parameters.
Since Eq. (20) is satisfied by any function, we consider four different types of
f(x): f(x) = 1, f(x) = x, f(x) = x2, and f(x) = x3 for simplicity.∫ 3h

2

− 3h
2

dx = 3h = c0 + c1 + c2 + c3 (21)

∫ 3h
2

− 3h
2

xdx = 0 = c0

(
−3h

2

)
+ c1

(
−h

2

)
+ c2

(
h

2

)
+ c3

(
3h

2

)
(22)

∫ 3h
2

− 3h
2

x2dx =
9h3

4
= c0

(
9h2

4

)
+ c1

(
h2

4

)
+ c2

(
h2

4

)
+ c3

(
9h2

4

)
(23)

∫ 3h
2

− 3h
2

x3dx = 0 = c0

(
−27h3

8

)
+ c1

(
−h

3

8

)
+ c2

(
h3

8

)
+ c3

(
27h3

8

)
(24)
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Numerical Integration Simpson’s Rule

Simpson’s 3/8 Rule

From Eqs. (21)-(24), we obtain

c0 = c3 =
3h

8

and

c1 = c2 =
9h

8

Thus, ∫ 3h
2

− 3h
2

f(x)dx ≈ 3h

8

[
f

(
−3h

2

)
+ 3f

(
−h

2

)
+ 3f

(
h

2

)
+ f

(
3h

2

)]
or equivalently∫ a+3h

a

f(x)dx ≈ 3h

8
[f (a) + 3f (a+ h) + 3f (a+ 2h) + f (a+ 3h)] (25)

By summing over all interval, we obtain Eq. (19).
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Numerical Integration Simpson’s Rule

Homework

Integrate
f(x) = exp(x)

over the interval x ∈ [0, 2.5] using the Simpson’s rule.
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Numerical Integration Mote Carlo Method

Monte Carlo Integration

1

x

y

1

Find π.

Use the area of the unit quarter circle.

Area of the blue square: A = 1.

Area of the quarter circle: A′ = π/4

The probability that a dart lands in any particular
region is proportional to the area of that region.

1 Generate a pair of random numbers x and y
(0 ≤ x ≤ 1 and 0 ≤ y ≤ 1)

2 If y ≤
√

1− x2 then increase Ncircle by one.

3 Repeat process (1) and (2) for N times.

4 Calculate the probability p = Ncircle/N .

5 From the relation p =
π
4

1 = Ncircle
N , we obtain

π = 4Ncircle/N .
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Numerical Integration Mote Carlo Method

Monte Carlo Integral

x
a b

f(x)
h

The most basic concept of Monte Carlo method is the important sampling.

sample the value of f(x)∫ b

a

f(x)dx =
b− a
N

N∑
i=1

f(xi) for large N (26)
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Numerical Integration Mote Carlo Method

Monte Carlo Method – Buffon’s Needle

1/2

l

θ
θcos 

2

sinθ

2

l
=

1

D

needle of length

Throw a needle to locate at a random position.

Use the probability that the needle touch or cross the lines.

Two random variables: D and θ.

0 ≤ D ≤ 1

2
, 0 ≤ θ ≤ π (27)
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Numerical Integration Mote Carlo Method

Monte Carlo Method – Buffon’s Needle

Condition that the needle touch or cross the black lines:

D ≤ 1

2
sin θ (28)

D

2

1sinθ
1

2

θ
π

Then we just obtain the area of the shaded region.
1 Generate two random numbers 0 ≤ D ≤ 1/2 and 0 ≤ θ ≤ π.
2 If D ≤ 1

2 sin θ then increase Ncount by 1.
3 Repeat (1) and (2) by N times.

Then the area of the shaded region becomes A =
∫ π

0
1
2 sin θ = 1. Thus,

p =
Ncount
N

=
1
π
2

⇒ π =
2

p
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Numerical Integration Mote Carlo Method

Design the Window for Buffon’s Needle
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Numerical Integration Multidimensional Integral

Multidimensional Integral

Basic idea: extension of the algorithms for single variable functions

Monte Carlo Method: more efficient!∫ b

a

∫ d

c

∫ f

e

F (x, y, z)dxdydz =

N∑
i=1

F (xi, yi, zi)∆v

where ∆v = (b−a)(d−c)(f−e)
N for large N .
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Numerical Integration Multidimensional Integral

Homework

Integrate
f(x, y, z) = x+ y + z

over the interval x ∈ [0, 1], y ∈ [0, 1], and z ∈ [0, 1] using the Monte Carlo
method.
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Numerical Integration Improper Integral

Improper Integral

Types of improper integral

range of integral → infinite
Integrand contains a singularity within the integration range

integrable singularity:
∫ 1
0

1√
1−x2

dx

nonitegrable singularity:
∫ 1
0

dx
x

Some special case:

lim
x→0

sinx

x
= 1

Take small ε then ∫ π

0

sinx

x
dx = ε+

∫ π

ε

sinx

x
dx

Infinite range integration: in some cases

I =

∫ b

0

exp(−x2)→
√
pi

2
= 0.886227 as b→∞

for b = 3, I = 0.886207 ⇒ error might be reasonably small.
Soon-Hyung Yook Numerical Calculus May 3, 2016 34 / 34


	Numerical Differentiation
	Taylor Expansion
	First-Order Derivative
	Second Order Derivative

	Numerical Integration
	Rectangular Method
	Trapezoidal Method
	Simpson's Rule
	Mote Carlo Method
	Multidimensional Integral
	Improper Integral


