Chap. 6
Solution of Linear and Nonlinear Equations

Soon-Hyung Yook

May 29, 2017
Table of Contents I

1 Simultaneous Linear Equations
 - Gauss-Jordan Elimination
 - Backsubstitution
 - Pivoting
 - LU Decomposition
 - Inverse of a Matrix
 - Tridiagonal and Banded Matrices

2 Eigenvalues and Eigenvectors
Simultaneous Linear Equations I

- Simultaneous set of linear equation:
 - One can solve the equation by using paper and a pen!
 - But if there are many variables, then the procedure is very tedious.
 - Moreover, humans are slow and prone to error in such tedious calculations.

Example: four simultaneous equations with four variables, \(w, x, y \) and \(z \).

\[
\begin{align*}
2w + x + 4 + z &= -4, \\
3w + 4x - y - z &= 3, \\
w - 4x + y + 5z &= 9, \\
2w - 2x + y + 3z &= 7
\end{align*}
\] (1)

In matrix form

\[
\begin{pmatrix}
2 & 1 & 4 & 1 \\
3 & 4 & -1 & -1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-4 \\
3 \\
9 \\
7
\end{pmatrix}.
\] (2)
Simultaneous Linear Equations

Simultaneous Linear Equations II

Alternatively, in a shorthand form:

\[Ax = v, \]

(3)

where \(x = (w, x, y, z) \) and the matrix \(A \) and vector \(v \) take the appropriate values. Then find the solution:

\[x = A^{-1}v. \]

(4)

But the problem is finding \(A^{-1} \) is not so trivial using computer.
Gauss-Jordan Elimination

- The most straightforward method to find the solution of Eq. (3).
- Two rules for Gauss-Jordan elimination:
 1. If we multiply any row of the matrix A by any constant, and we multiply the corresponding row of the vector v by the same constant, then the solution does not change.
 2. If we add to or subtract from any row of A a multiple of any other row, and we do the same for the vector v, then the solution does not change.
As for an example, let’s try to solve Eq. (2) by hand:

1. Divide the first row by the top-left element of the matrix:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
3 & 4 & -1 & -1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-2 \\
3 \\
9 \\
7
\end{pmatrix}.
\] (5)

2. Subtract 3 times the first row from the second row:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 2.5 & -7 & -2.5 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-2 \\
9 \\
9 \\
7
\end{pmatrix}.
\] (6)
Example: Eq. (2) II

3 Subtract the first row from the third one, and also subtract 2 times the first row from the fourth:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 2.5 & -7 & -2.5 \\
0 & -4.5 & -1 & 4.5 \\
0 & -3 & -3 & 2
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
9 \\
11 \\
11
\end{pmatrix}.
\] (7)

4 Divide the second row by 2.5:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & -4.5 & -1 & 4.5 \\
0 & -3 & -3 & 2
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
3.6 \\
11 \\
11
\end{pmatrix}.
\] (8)
Example: Eq. (2) III

5 Subtract -4.5 times the second row from the third, and -3 times the second row from the fourth:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & -13.6 & 0 \\
0 & 0 & -11.4 & -1
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-2 \\
3.6 \\
27.2 \\
21.8
\end{pmatrix}.
\] \hspace{1cm} (9)

6 Divide the third row by -13.6:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & -11.4 & -1
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-2 \\
3.6 \\
-2 \\
21.8
\end{pmatrix}.
\] \hspace{1cm} (10)
Example: Eq. (2) IV

7 Subtract \(-11.4\) times third row from the fourth:

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
3.6 \\
-2 \\
-1
\end{pmatrix}.
\tag{11}
\]

8 Divide the fourth row by \(-1\):

\[
\begin{pmatrix}
1 & 0.5 & 2 & 0.5 \\
0 & 1 & -2.8 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
3.6 \\
-2 \\
1
\end{pmatrix}.
\tag{12}
\]

By definition, Eq. (12) has the same solution with Eq. (2), but the matrix is now upper triangular.
Backsubstitution I

- To find the final solution of Eq. (2) we now use the process of backsubstitution.
- Suppose we have any set of equations of the form:

\[
\begin{pmatrix}
1 & a_{01} & a_{02} & a_{03} \\
0 & 1 & a_{12} & a_{13} \\
0 & 0 & 1 & a_{23} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
v_0 \\
v_1 \\
v_2 \\
v_3
\end{pmatrix}.
\] (13)

- Eq. (13) can be written as:

\[
w + a_{01}x + a_{02}y + a_{03}z = v_0,
\] (14)

\[
x + a_{12}y + a_{13}z = v_1,
\] (15)

\[
y + a_{23}z = v_2,
\] (16)

\[
z = v_3.
\] (17)
Backsubstitution II

1. From Eq. (17):
 \[z = v_3 \]

2. From Eq. (16)
 \[y = v_2 - a_{23}z \]

3. From Eq. (15)
 \[x = v_1 - a_{12}y - a_{13}z \]

4. From Eq. (14)
 \[w = v_0 - a_{01}x - a_{02}y - a_{03}z \]

Applying Eqs. (18)-(21) we obtain:

 \[w = 2, \quad x = -1, \quad y = -2, \quad z = 1. \]

(22)
Example 6.1: I

Guassian elimination for Eq. (2):

```python
from numpy import array, empty

A=array([[2,1,4,1],
          [3,4,-1,-1],
          [1,-4,1,5],
          [2,-2,1,3]], float)

v=array([-4,3,9,7], float)
N=len(v)

# Gaussian Elimination
for m in range(N):
    # Divide by the diagonal element
    div=A[m,m]
    A[m,:]/=div
    v[m]/=div

    # Subtract from the lower rows
    for i in range(m+1,N):
        mult=A[i,m]
        A[i,:]-=mult*A[m,:]
        v[i]-=mult*v[m]

# Backsubstitution
```
Example 6.1: II

```
x=empty(N, float)
for m in range(N-1, -1, -1):
    x[m]=v[m]
    for i in range(m+1,N):
        x[m]=A[m, i]*x[i]

print(x)
```
Now let’s consider the equations:

\[
\begin{pmatrix}
0 & 1 & 4 & 1 \\
3 & 4 & -1 & -1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
-4 \\
3 \\
9 \\
7
\end{pmatrix}.
\]

- Here the first element of the first row is zero!
- This causes a problem to apply Gauss-Jordan elimination.
 - Divide by zero is not allowed.
Pivoting II

Pivoting

Exchange rows:

\[
\begin{pmatrix}
3 & 4 & -1 & -1 \\
0 & 1 & 4 & 1 \\
1 & -4 & 1 & 5 \\
2 & -2 & 1 & 3
\end{pmatrix}
\begin{pmatrix}
w \\
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
3 \\
-4 \\
9 \\
7
\end{pmatrix}.
\]

(24)

Partial Pivoting

With partial pivoting, we consider rearranging the rows at each stage.

- When we get to the \(m \)th row, we compare it to all lower rows, looking at the value each row has in its \(m \)th elements and finding the one such value that is the farthest from zero—either positive or negative.
- If the row containing this winning value is not currently \(m \)th row, then we move it up to \(m \)th place by swapping it with the current \(m \)th row.
Example–Exercise 6.2 I

Solve Eq. (23) using Gauss-Jordan elimination with partial pivoting.

```python
from numpy import array, empty

A = array([[0, 1, 4, 1],
           [3, 4, -1, -1],
           [1, -4, 1, 5],
           [2, -2, 1, 3]], float)

v = array([-4, 3, 9, 7], float)
N = len(v)

# Gaussian Elimination
for m in range(N):
    # Applying partial pivoting
    pivot_max = abs(A[m, m])
    pivot_point = m
    for i in range(m + 1, N):
        pivot_tmp = abs(A[i, m])
        if pivot_tmp > pivot_max:
            pivot_point, pivot_max = i, pivot_tmp
    if m != pivot_point:
        for i in range(N):
            A[m, i], A[pivot_point, i] = A[pivot_point, i], A[m, i]
        v[m], v[pivot_point] = v[pivot_point], v[m]
```

Soon-Hyung Yook
Chap. 6
May 29, 2017 16 / 62
Simultaneous Linear Equations

Example—Exercise 6.2 II

```python
print(A)
input()
# Divide by the diagonal element
div=A[m,m]
A[m,:]/=div
v[m]/=div

# Subtract fro the lower rows
for i in range(m+1,N):
    mult=A[i,m]
    A[i,:]=mult*A[m,:]
    v[i]=mult*v[m]

# Backsubtraction
x=empty(N, float)
for m in range(N-1,-1,-1):
    x[m]=v[m]
    for i in range(m+1,N):
        x[m]=A[m,i]*x[i]
print(x)
```
Gauss-Jordan Elimination in Matrix Form I

- Basically based on the Gauss-Jordan elimination method.
- Powerful when we have to solve many different sets of equations $Ax = v$ with the same matrix A but different right-hand sides v.
 - Repeating Gauss-Jordan elimination would be time-consuming.

Suppose we have a 4×4 matrix

$$A = \begin{pmatrix}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23} \\
a_{30} & a_{31} & a_{32} & a_{33}
\end{pmatrix} \quad (25)$$

The Gauss-Jordan elimination is written as a matrix form:
Step 1:

$$\frac{1}{a_{00}} \begin{pmatrix}
1 & 0 & 0 & 0 \\
-a_{10} & a_{00} & 0 & 0 \\
-a_{20} & 0 & a_{00} & 0 \\
-a_{30} & 0 & 0 & a_{00}
\end{pmatrix} \begin{pmatrix}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
a_{20} & a_{21} & a_{22} & a_{23} \\
a_{30} & a_{31} & a_{32} & a_{33}
\end{pmatrix} = \begin{pmatrix}
1 & b_{01} & b_{02} & b_{03} \\
0 & b_{11} & b_{12} & b_{13} \\
0 & b_{21} & b_{22} & b_{23} \\
0 & b_{31} & b_{32} & b_{33}
\end{pmatrix} \quad (26)$$
Define a *lower triangular* matrix L_0 as

$$L_0 = \frac{1}{a_{00}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -a_{10} & a_{00} & 0 & 0 \\ -a_{20} & 0 & a_{00} & 0 \\ -a_{30} & 0 & 0 & a_{00} \end{pmatrix} \tag{27}$$

Step 2:

$$\frac{1}{b_{11}} \begin{pmatrix} b_{11} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -b_{21} & b_{11} & 0 \\ 0 & -b_{31} & 0 & b_{11} \end{pmatrix} \begin{pmatrix} 1 & b_{01} & b_{02} & b_{03} \\ 0 & b_{11} & b_{12} & b_{13} \\ 0 & b_{21} & b_{22} & b_{23} \\ 0 & b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} 1 & c_{01} & c_{02} & c_{03} \\ 0 & 1 & c_{12} & c_{13} \\ 0 & 0 & c_{22} & c_{23} \\ 0 & 0 & c_{32} & c_{33} \end{pmatrix} \tag{28}$$

Define another lower triangular matrix L_1 as

$$L_1 = \frac{1}{b_{11}} \begin{pmatrix} b_{11} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -b_{21} & b_{11} & 0 \\ 0 & -b_{31} & 0 & b_{11} \end{pmatrix} \tag{29}$$
Gauss-Jordan Elimination in Matrix Form III

Step 3:

\[
\frac{1}{c_{22}} \begin{pmatrix} c_{22} & 0 & 0 & 0 \\ 0 & c_{22} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -c_{32} & c_{22} \end{pmatrix} \begin{pmatrix} 1 & c_{01} & c_{02} & c_{03} \\ 0 & 1 & c_{12} & c_{13} \\ 0 & 0 & c_{22} & c_{23} \\ 0 & 0 & c_{32} & c_{33} \end{pmatrix} = \begin{pmatrix} 1 & d_{01} & d_{02} & d_{03} \\ 0 & 1 & d_{12} & d_{13} \\ 0 & 0 & 1 & d_{23} \\ 0 & 0 & 0 & d_{33} \end{pmatrix} \tag{30}
\]

And define \(L_2 \) as

\[
L_2 = \frac{1}{c_{22}} \begin{pmatrix} c_{22} & 0 & 0 & 0 \\ 0 & c_{22} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -c_{32} & c_{22} \end{pmatrix}
\tag{31}

Step 4:

\[
\frac{1}{d_{33}} \begin{pmatrix} d_{33} & 0 & 0 & 0 \\ 0 & d_{33} & 0 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d_{01} & d_{02} & d_{03} \\ 0 & 1 & d_{12} & d_{13} \\ 0 & 0 & 1 & d_{23} \\ 0 & 0 & 0 & d_{33} \end{pmatrix} = \begin{pmatrix} 1 & u_{01} & u_{02} & u_{03} \\ 0 & 1 & u_{12} & u_{13} \\ 0 & 0 & 1 & u_{23} \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{32}
\]
Gauss-Jordan Elimination in Matrix Form IV

Define L_3 as

$$L_3 = \frac{1}{d_{33}} \begin{pmatrix} d_{33} & 0 & 0 & 0 \\ 0 & d_{33} & 0 & 0 \\ 0 & 0 & d_{33} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(33)

Step 1-Step 4 are mathematically written as

$$L_3L_2L_1L_0A$$

Therefore, we solve our original set of equations $Ax = v$ by multiplying $L_3L_2L_1L_0$ as

$$L_3L_2L_1L_0Ax = L_3L_2L_1L_0v$$

(34)

Then apply the backsubstitution.
In practice, we don’t need to have all four matrix \(L_0 \), \(L_1 \), \(L_2 \), and \(L_3 \).

- Define two matrices:
 \[
 L = L_0^{-1}L_1^{-1}L_2^{-1}L_3^{-1}, \quad \quad \quad \quad \quad \quad U = L_3L_2L_1L_0A \tag{35}
 \]

- Note that \(U \) is the upper triangular matrix (right-hand side of Eq. (32)).
- Multiplying \(L \) and \(U \) gives
 \[
 LU = A \tag{36}
 \]
- Form the original set of equations, \(Ax = v \),
 \[
 LUx = v \tag{37}
 \]
- Note that \(L \) is lower triangular matrix.
Consider the matrix L_0 for example:

$$L_0 = \frac{1}{a_{00}} \begin{pmatrix}
1 & 0 & 0 & 0 \\
-a_{10} & a_{00} & 0 & 0 \\
-a_{20} & 0 & a_{00} & 0 \\
-a_{30} & 0 & 0 & a_{00}
\end{pmatrix} \quad (38)$$

Inverse of L_0 is

$$L_0^{-1} = \begin{pmatrix}
a_{00} & 0 & 0 & 0 \\
a_{10} & 1 & 0 & 0 \\
a_{20} & 0 & 1 & 0 \\
a_{30} & 0 & 0 & 1
\end{pmatrix} \quad (39)$$

It can be easily verified by showing $L_0L_0^{-1} = I$, where I is an identity matrix (or more precisely see Boas’s book).
Simultaneous Linear Equations
LU Decomposition

LU Decomposition III

- Similarly,
 \[
 L^{-1}_1 = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & b_{11} & 0 & 0 \\
 0 & b_{21} & 1 & 0 \\
 0 & b_{31} & 0 & 1 \\
 \end{pmatrix} \quad L^{-1}_2 = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & c_{22} & 0 \\
 0 & 0 & c_{32} & 1 \\
 \end{pmatrix} \quad L^{-1}_c = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & d_{33} \\
 \end{pmatrix}
 \]

- Multiplying them all together:

\[
L = L^{-1}_0 L^{-1}_1 L^{-1}_2 L^{-1}_3 = \begin{pmatrix}
 a_{00} & 0 & 0 & 0 \\
 a_{10} & b_{11} & 0 & 0 \\
 a_{20} & b_{21} & c_{22} & 0 \\
 a_{30} & b_{31} & c_{32} & d_{33} \\
 \end{pmatrix}
\] (41)

- Not only is \(L \) is lower triangular, but its elements are easily obtained through Gauss-Jordan elimination.
LU Decomposition-Backsubtraction I

To find a rule for backsubstitution, let’s consider a 3×3 matrix A.

- The LU decomposition of A looks like:

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} l_{00} & 0 & 0 \\ l_{10} & l_{11} & 0 \\ l_{20} & l_{21} & l_{22} \end{pmatrix} \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ 0 & u_{11} & u_{12} \\ 0 & 0 & u_{22} \end{pmatrix}. \quad (42)$$

- Then the linear equations $Ax = v$ becomes

$$\begin{pmatrix} l_{00} & 0 & 0 \\ l_{10} & l_{11} & 0 \\ l_{20} & l_{21} & l_{22} \end{pmatrix} \begin{pmatrix} u_{00} & u_{01} & u_{02} \\ 0 & u_{11} & u_{12} \\ 0 & 0 & u_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} v_0 \\ v_1 \\ v_2 \end{pmatrix}. \quad (43)$$

- Define a new vector y as

$$\begin{pmatrix} u_{00} & u_{01} & u_{02} \\ 0 & u_{11} & u_{12} \\ 0 & 0 & u_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \end{pmatrix}. \quad (44)$$
Then Eq. (43) becomes
\[
\begin{pmatrix}
 l_{00} & 0 & 0 \\
 l_{10} & l_{11} & 0 \\
 l_{20} & l_{21} & l_{22}
\end{pmatrix}
\begin{pmatrix}
y_0 \\
y_1 \\
y_2
\end{pmatrix}
=
\begin{pmatrix}
v_0 \\
v_1 \\
v_2
\end{pmatrix}.
\tag{45}
\]

From the first line of Eq. (45), \(l_{00}y_0 = v_0 \). Thus
\[
y_0 = \frac{v_0}{l_{00}}.
\tag{46}
\]

From the second line of Eq. (45), \(l_{10}y_0 + l_{11}y_1 = v_1 \), or
\[
y_1 = \frac{v_1 - l_{10}y_0}{l_{11}}.
\tag{47}
\]

From the third line of Eq. (45) gives
\[
y_2 = \frac{v_2 - l_{20}y_0 - l_{21}y_1}{l_{22}}.
\tag{48}
\]
General Representation of y

$$y_i = \frac{v_i - \sum_{j=0}^{i-1} l_{ij} y_j}{l_{ii}}.$$ \hspace{1cm} (49)

- Applying partial pivoting is also trivial.

However, the simplest way to implement LU decomposition and backsubstitution is to use the `solve` function in `numpy.linalg` package like this:

```python
from numpy.linalg import solve
x = solve(A, v)
```
LU Decomposition: Example 1

Solve Eq. (23) using LU decomposition with partial pivoting.

```python
from numpy import array, zeros, empty, copy, dot
from numpy.linalg import solve

A = array([[0, 1, 4, 1],
           [3, 4, -1, -1],
           [1, -4, 1, 5],
           [2, -2, 1, 3]], float)
v = array([-4, 3, 9, 7], float)
N = len(v)
L = zeros([N, N], float)
U = empty([N, N], float)
U = copy(A)
print("A=", A)
print("U=", U)

# Gaussian Elimination with LU decomposition
for m in range(N):
    # Applying partial pivoting
    pivot_max = abs(U[m, m])
    pivot_point = m
    for i in range(m + 1, N):
        pivot_tmp = abs(U[i, m])
        if pivot_tmp > pivot_max:
            pivot_max = pivot_tmp
            pivot_point = i
    U[pivot_point, :] = U[m, :]
    U[:, pivot_point] = U[:, m]
```
LU Decomposition: Example II

```python
pivot_point, pivot_max = i, pivot_tmp
if m != pivot_point:
    for i in range(N):
        U[m, i], U[pivot_point, i] = U[pivot_point, i], U[m, i]
        L[m, i], L[pivot_point, i] = L[pivot_point, i], L[m, i]
        A[m, i], A[pivot_point, i] = A[pivot_point, i], A[m, i]
        v[m], v[pivot_point] = v[pivot_point], v[m]

    L[m:, m] = U[m:, m]

    # Divide by the diagonal element
    div = U[m, m]
    U[m, :] /= div

    # Subtract from the lower rows
    for i in range(m+1, N):
        mult = U[i, m]
        U[i, :] -= mult * U[m, :]

print()
print("After GE with LUD")
print("U=", U)
print()
print("L=", L)
print()
```
LU Decomposition: Example III

```python
print("A=", A)
print()
print("LU=", dot(L, U))

# Backsubtraction
y = empty(N, float)
for m in range(N):
    y[m] = v[m]
    for i in range(m):
        y[m] -= L[m, i] * y[i]
    y[m] /= L[m, m]

x = empty(N, float)
for m in range(N-1, -1, -1):
    x[m] = y[m]
    for i in range(m+1, N):
        x[m] -= U[m, i] * x[i]
    x[m] /= U[m, m]
print("\n")
print("x=", x)
print("solve(A, v)=", solve(A, v))
```
Calculating the Inverse of a Matrix I

Inverse of matrix:

\[A^{-1} = \frac{1}{\det A} C^T \quad (50) \]

where \(C_{ij} \) is cofactor of \(a_{ij} \) (see the mathematical physics textbook).

- But calculating the determinants are time consuming and prone to make large error.

- Apply the method to solve simultaneous linear equations.

- Consider a form

\[AX = V. \quad (51) \]

- Now, \(X \) and \(V \) are \(N \times N \) matrix as well as \(A \).

- If \(V = I \), then \(X \) is the inverse matrix of \(A \).
Calculating the Inverse of a Matrix II

Calculating the Inverse of a Matrix

Now we have to solve a set of \(N \) simultaneous linear equations:

\[
AX_j = V_j, \tag{52}
\]

where \(j = 0, 1, \ldots, N - 1 \).

- \(X_j \) is the \(j \)th column of matrix \(X \).
- \(V_j \) is the \(j \)th column of matrix \(V \).
- We set \(V = I \).

Then we can apply the Gauss-Jordan elimination or LU decomposition method for each column vector \(X_j \) and \(V_j \).

By combining \(X_j \)'s we can obtain \(X = A^{-1} \).

Of course we can also use \texttt{inv} function in \texttt{numpy.linalg} package as:

```python
from numpy.linalg import inv
X=inv(A)
```
Inverse Matrix: Example I

Find A^{-1} in Eq. (23) using LU decomposition with partial pivoting.

```python
from numpy import array, zeros, empty, copy, dot
from numpy.linalg import inv

A = array([[0, 1, 4, 1],
           [3, 4, -1, -1],
           [1, -4, 1, 5],
           [2, -2, 1, 3]], float)

n = A.shape
N = n[1]
L = zeros([N, N], float)
U = empty([N, N], float)
U = copy(A)
V = zeros([N, N], float)
for m in range(N):
    V[m, m] = 1.0

print("A=", A)
predict ("U=", U)
predict ("V=", V)
predict ("inv(A)=", inv(A))    # for comparison

# Gaussian Elimination with LU decomposition
for m in range(N):
    # Applying partial pivoting
```
Inverse Matrix: Example II

```python
pivot_max = abs(U[m,m])
pivot_point = m
for i in range(m+1, N):
    pivot_tmp = abs(U[i,m])
    if pivot_tmp > pivot_max:
        pivot_point, pivot_max = i, pivot_tmp
if m != pivot_point:
    for i in range(N):
        U[m,i], U[pivot_point, i] = U[pivot_point, i], U[m, i]
        L[m,i], L[pivot_point, i] = L[pivot_point, i], L[m, i]
        A[m,i], A[pivot_point, i] = A[pivot_point, i], A[m, i]
        V[m,i], V[pivot_point, i] = V[pivot_point, i], V[m, i]
L[m:,m] = U[m:,m]
# Divide by the diagonal element
div = U[m,m]
U[m,:] /= div

# Subtract from the lower rows
for i in range(m+1, N):
    mult = U[i,m]
    U[i,:] -= mult * U[m,:]
# Now we have L and U
```
Inverse Matrix: Example III

```python
Y=empty([N,N], float )
for j in range(N):  # for each column
    for m in range(N):  # for each row
        Y[m, j]=V[m, j ]
        for i in range(m):
            Y[m, j]−=L[m, i ]*Y[i , j ]
        Y[m, j] /=L[m,m]

X=empty([N,N], float )
for j in range(N):
    for m in range(N−1,−1,−1):
        X[m, j]=Y[m, j ]
        for i in range(m+1,N):
            X[m, j]−=U[m, i ]*X[i , j ]
        X[m, j] /=U[m,m]

print("\n")
print("X=" ,X)
```
Tridiagonal Matrices: Trigonal Matrix Algorithm or Thomas Algorithm

A special case that arise often in physics problems is the solution of $Ax = v$ when the matrix A is tridiagonal:

$$A = \begin{pmatrix}
a_{00} & a_{01} & 0 & 0 & 0 \\
a_{10} & a_{11} & a_{12} & 0 & 0 \\
0 & a_{21} & a_{22} & a_{23} & 0 \\
0 & 0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & a_{43} & a_{44}
\end{pmatrix}.$$

(53)

- The matrix has nonzero elements only along the diagonal and immediately above and below it.
- Simple Gauss-Jordan elimination is a good choice for solving the problem.
 - Quick
 - Pivoting is typically not used
 - Thus, the programming is straightforward.
 - We do not need to go through the entire Gauss-Jordan elimination process.
 - Each row only need to be subtracted from the single row immediately below it – and not all lower rows – to make the matrix triangular.
Consider a 4×4 matrix:

$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 3 & 4 & -5 & 0 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix} \quad (54)$$

1. **Step 1**: Divide the first row by 2, then subtract 3 times the result from the second row:

$$\begin{pmatrix} 1 & 0.5 & 0 & 0 \\ 0 & 2.5 & -5 & 0 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix} \quad (55)$$
Illustration: How to Make the Matrix Triangular II

Step 2: Divide the second row by 2.5 and subtract -4 times the result from the third row:

$$
\begin{pmatrix}
1 & 0.5 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & -5 & 5 \\
0 & 0 & 1 & 3 \\
\end{pmatrix}
$$

(56)

Step 3: Divide the third row by -5 and subtract it from the fourth row:

$$
\begin{pmatrix}
1 & 0.5 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 \\
\end{pmatrix}
$$

(57)
Illustration: How to Make the Matrix Triangular III

Step 4: Divide the fourth row by 4, then we obtain upper triangular matrix:

\[
\begin{pmatrix}
1 & 0.5 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\] \tag{58}

- Note that green colored elements are not changed when subtracting some constant multiple of the above row.
- Use this fact to reduce the computing time.
Illustration: Backsubstitution I

The matrix form after the Gauss-Jordan elimination:

\[
\begin{pmatrix}
1 & a_{01} & 0 & 0 \\
0 & 1 & a_{12} & 0 \\
0 & 0 & 1 & a_{23} \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_0 \\
x_1 \\
x_2 \\
x_3
\end{pmatrix}
= \begin{pmatrix}
v_0 \\
v_1 \\
v_2 \\
v_3
\end{pmatrix}.
\] (59)

Solution:

\[
x_3 = v_3 \tag{60}
\]
\[
x_2 = v_2 - a_{23}x_3 \tag{61}
\]
\[
x_1 = v_1 - a_{12}x_2 \tag{62}
\]
\[
x_0 = v_0 - a_{01}x_1 \tag{63}
\]

This algorithm is known as trigonal matrix algorithm or Thomas algorithm.

- Note that the cyan colored elements do not work anything in the \(v\).
- They just become 0.
 - Just keep in mind this and never use the cyan colored elements during the back substitution to reduce computing time.
Banded Matrix

The matrix A is **banded**, if it is similar to a trigonal matrix but **can have more than one nonzero elements to either side of the diagonal**, like this:

$$
A = \begin{pmatrix}
 a_{00} & a_{01} & a_{02} & 0 & 0 & 0 & 0 \\
 a_{10} & a_{11} & a_{12} & a_{13} & 0 & 0 & 0 \\
 a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & 0 & 0 \\
 0 & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & 0 \\
 0 & 0 & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\
 0 & 0 & 0 & a_{53} & a_{54} & a_{55} & a_{56} \\
 0 & 0 & 0 & 0 & a_{64} & a_{65} & a_{66} \\
\end{pmatrix}
$$

- The method to solve such equation is also similar to that for triangular matrix.
- But the backsubstitution is more complicated.
 - Such complication makes the calculation little bit slower than that for triangular matrix.
 - But still be faster than the general algorithm such as `solve` in `numpy.linalg` package.
Example 6.2: Vibration in a One-Dimensional System I

Suppose we have a set of \(N \) identical masses in a row, joined by identical linear spring as:

We ignore gravity for simplicity.
- Let \(\zeta_i \) be the displacement of the \(i \)th mass relative to its equilibrium position.
- Newton’s equation:

\[
m \frac{d^2 \zeta_i}{dt^2} = k(\zeta_{i+1} - \zeta_i) + k(\zeta_{i-1} - \zeta_i) + F_i, \tag{65}
\]

where \(m \) is the mass and \(k \) is the spring constant.
- \(F_i \) represents any external force acting on mass \(i \).
Example 6.2: Vibration in a One-Dimensional System II

- The masses at the two ends:

 \[m \frac{d^2 \zeta_1}{dt^2} = k(\zeta_2 - \zeta_1) + F_1, \]
 \[m \frac{d^2 \zeta_N}{dt^2} = k(\zeta_{N-1} - \zeta_N) + F_N, \]

 \hspace{1cm} (66) \hspace{1cm} (67)

- Assume that \(F_1 = Ce^{i\omega t} \) and \(F_i = 0 \) for all \(i > 1 \).

- By assuming that the solution \(\zeta_i = x_i e^{i\omega t} \) we obtain the \(N \)-coupled linear equations:

 \[-m\omega^2 x_1 = k(x_2 - x_1) + C, \]
 \[-m\omega^2 x_i = k(x_{i+1} - x_i) + k(x_{i-1} - x_i), \]
 \[-m\omega^2 x_N = k(x_{N-1} - x_N), \]

 \hspace{1cm} (68) \hspace{1cm} (69) \hspace{1cm} (70)

 where \(i \) is in the range \(2 \leq i \leq N - 1 \).
Example 6.2: Vibration in a One-Dimensional System III

- Rearrange Eqs. (68)-(70):

\[
(\alpha - k)x_1 - kx_2 = C, \quad (71)
\]
\[
\alpha x_i - k_{i-1} - kx_{i+1} = 0, \quad (72)
\]
\[
(\alpha - k)x_N - kx_{N-1} = 0, \quad (73)
\]

where \(\alpha = 2k - m\omega^2 \).

- In matrix form:

\[
\begin{pmatrix}
(\alpha - k) & -k & & \\
- & (\alpha - k) & -k & \\
- & -k & (\alpha - k) & \\
\vdots & \ddots & \ddots & \ddots \\
- & -k & (\alpha - k) & \\
- & -k & -(\alpha - k) & \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_{N-1} \\
x_N \\
\end{pmatrix}
= \begin{pmatrix}
C \\
0 \\
0 \\
\vdots \\
0 \\
0 \\
\end{pmatrix}. \quad (74)
\]

Solve Eq. (74) with \(m = 1, k = 6, \) and \(\omega = 2 \).
Example 6-2: Solution I

Direct transform of Step1-Step5:

```python
from numpy import zeros, empty
from pylab import plot, show
from numpy.linalg import solve

# Constants
N=26
C=1.0
m=1.0
k=6.0
omega=2.0
alpha=2*k-m*omega**2

# Set up the initial values of the array
A=zeros([N,N],float)
for i in range(N-1):
    A[i,i]=alpha
    A[i,i+1]=-k
    A[i+1,i]=-k
A[0,0]=k
A[N-1,N-1]=alpha-k
v=zeros(N,float)
v[0]=C
```

Soon-Hyung Yook
Chap. 6
May 29, 2017 45 / 62
Example 6-2: Solution II

```python
# To compare the results with numpy.linalg
xx = solve(A, v)

# Perform the Gauss−Jordan Elimination
for i in range(N−1):
    # Divide row i by its diagonal element
    div = A[i, i]
    A[i, i+1] /= div
    v[i] /= div

    # Now subtract it from the next row down
    if i == N−2:
        n = 2
    else:
        n = 3
    a_tmp = A[i+1, i]
    for j in range(n):
        A[i+1, i+j] -= A[i, i+j] * a_tmp
        v[i+1] -= a_tmp * v[i]

# Divide the last element of v by the last diagonal element
v[N−1] /= A[N−1, N−1]

# Backsubstitution
```
Example 6-2: Solution III

```python
x = empty(N, float)
x[N-1] = v[N-1]
for i in range(N-2, -1, -1):
    x[i] = v[i] - A[i, i+1] * x[i+1]

# Plot the results
plot(x)
plot(x, "ko", ms=15.0)
plot(xx, "rs")
show()
```
Example 6-2: Solution IV
Example 6-2: Modified Version I

Applying the **cyan** and **red** colored parts:

```python
from numpy import zeros, empty
from pylab import plot, show
from numpy.linalg import solve

# Constants
N=26
C=1.0
m=1.0
k=6.0
omega=2.0
alpha=2*k-m*omega**2

# Set up the initial values of the array
A=zeros([N,N], float)
for i in range(N-1):
    A[i, i]=alpha
    A[i, i+1]=-k
    A[i+1, i]=-k
A[0,0]=-k
A[N-1,N-1]=alpha-k

v=zeros(N, float)
v[0]=C
```
Example 6-2: Modified Version II

```python
xx=solve(A,v)

# Perform The Gauss-Jordan Elimination
for i in range(N-1):
    # Divide row i by its diagonal element
    A[i, i+1] = A[i, i]
    v[i] = A[i, i]

    # Now subtract it from the next row down
    A[i+1, i+1] = A[i+1, i] * A[i, i+1]
    v[i+1] = A[i+1, i] * v[i]

# Divide the last element of v by the last diagonal element
v[N-1] = A[N-1, N-1]

# Backsubstitution
x=empty(N, float)
for i in range(N-1, -1, -1):
    x[i] = v[i] - A[i, i+1] * x[i+1]

# Plot the results
plot(x)
plot(x,"ko")
```
Example 6-2: Modified Version III

```python
plot(xx,"rs")
show()
```
Eigenvalues and Eigenvectors

- Eigenvalue problems are common in physics.
 - Mechanics
 - Electromagnetism
 - Quantum mechanics
 - etc.

- Most eigenvalue problems in physics concern real symmetric matrix or Hermitian matrix when complex numbers are involved.

- Focus on a real symmetric matrix A.

- The eigenvector v satisfies:

$$Av = \lambda v,$$

(75)

where λ is the corresponding eigenvalue.

- For $N \times N$ matrix, there are N eigenvectors, v_1, v_2, \cdots, v_N with eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_N$.

- Eigenvectors for symmetric matrix are orthogonal and we will assume they are normalized, i.e., $v_i \cdot v_j = \delta_{ij}$. Here δ_{ij} is Kronecker delta.
QR Decomposition

- Let V be an $N \times N$ matrix whose ith column corresponds to the ith eigenvector v_i.
- In a matrix form Eq. (75) can be written as

$$AV = VD,$$

where D is the diagonal matrix with the eigenvalues λ_i as its diagonal entries.
- Note that the matrix V is orthogonal, thus $V^T = V^{-1}$, so $V^T V = VV^T = I$.

QR Decomposition

- Like the LU decomposition, rewrite the matrix A as the product QR, i.e.,

$$A = QR,$$

- Q: an orthogonal matrix
- R: upper-triangular matrix
Mathematics on QR Decomposition I

Suppose we have some way to calculate the matrices Q and R.

Let A be a real symmetric matrix then A can be written as:

$$A = Q_1 R_1$$ \hspace{1cm} (78)

Multiplying on the left by Q^T_1, we get

$$Q^T_1 A = Q^T_1 Q_1 R_1 = R_1,$$ \hspace{1cm} (79)

where we use the fact that Q_1 is orthogonal.

Let us define a new matrix

$$A_1 = R_1 Q_1.$$ \hspace{1cm} (80)

Combining Eqs. (79) and (80), we have

$$A_1 = Q^T_1 A Q_1.$$ \hspace{1cm} (81)

Decompose A_1 as $A_1 = Q_2 R_2$, then $R_2 = Q^T_2 A_1$.
Define a new matrix \(A_2 \) as

\[
A_2 = R_2 Q_2 = Q_2^T A_1 Q_2 = Q_2^T Q_1^T A Q_1 Q_2 \quad (82)
\]

Repeat the process up to total \(k \) steps then

\[
A_1 = Q_1^T A Q_1, \quad (83)
\]

\[
A_2 = Q_2^T Q_1^T A Q_1 Q_2, \quad (84)
\]

\[
A_3 = Q_3^T Q_2^T Q_1^T A Q_1 Q_2 Q_3, \quad (85)
\]

\[
\vdots \quad (86)
\]

\[
A_k = (Q_k^T \cdots Q_1^T) A (Q_1 \cdots Q_k). \quad (87)
\]

As one continue this process long enough, the matrix \(A_k \) become diagonal.

- The off-diagonal elements get smaller and smaller the more iterations of the process on do until they eventually reach zero— or as close to zero as makes no difference.
- With given accuracy we can obtain diagonalized matrix \(A_k \).
The matrix A_k approximates a diagonal matrix D in Eq. (76).

Let us define the additional matrix:

$$V = Q_1 Q_2 \cdots Q_k = \prod_{i=1}^{k} Q_i \tag{88}$$

Then from Eq. (87) we have

$$D = A_k = V^T AV. \tag{89}$$

Multiplying on the left by V:

$$AV = VD, \tag{90}$$

which is exactly the same form of Eq. (76).
Algorithm for QR Decomposition

QR Decomposition

1. Create an $N \times N$ matrix V to hold the eigenvectors.
2. Initialize V to be equal to the identity matrix I.
3. Choose a target accuracy ϵ for off-diagonal elements of the eigenvalue matrix.
4. Calculate the QR decomposition $A = QR$.
5. Update A to the new value $A = RQ$.
6. Multiply V on the right by Q.
7. Check the off-diagonal elements of A. If they are all less than ϵ, we are done. Otherwise go back to step 4.

In numpy.linalg package, eigh() and eigvalsh() functions are also available for the general purpose.
How to Calculate Q and R

Given $N \times N$ matrix A, we can compute the QR decomposition as follows:

- Let us think of the matrix as a set of N column vectors $a_0, a_1, \cdots, a_{N-1}$.

\[
A = \begin{pmatrix}
| & | & | & \cdots \\
| a_0 & a_1 & a_2 & \cdots \\
| & | & | & \cdots
\end{pmatrix}. \tag{91}
\]

- Define two new set of vectors u_0, \cdots, u_{N-1} and q_0, \cdots, q_{N-1} as follows (Gram-Schmidt Orthogonalization):

\[
\begin{align*}
 u_0 &= a_0, \\
 u_1 &= a_1 - (q_0 \cdot a_1)q_0, \\
 u_2 &= a_2 - (q_0 \cdot a_2)q_0 - (q_1 \cdot a_2)q_1,
\end{align*}
\]

and so forth.
How to Calculate Q and R II

- General form:
 \[u_i = a_i - \sum_{j=0}^{i-1} (q_j \cdot a_i)q_j, \quad q_i = \frac{u_i}{|u_i|} \]

- Then A becomes:
 \[
 A = \begin{pmatrix}
 a_0 & a_1 & a_2 & \cdots \\
 a_1 & a_2 & \cdots & \vdots \\
 a_2 & \cdots & \ddots & \vdots \\
 \vdots & \ddots & & \vdots \\
 \end{pmatrix}
 = \begin{pmatrix}
 q_0 & q_1 & q_2 & \cdots \\
 q_1 & q_2 & \cdots & \vdots \\
 q_2 & \cdots & \ddots & \vdots \\
 \vdots & \ddots & & \vdots \\
 \end{pmatrix}
 \begin{pmatrix}
 |u_0| & q_0 \cdot a_1 & q_0 \cdot a_2 & \cdots \\
 0 & |u_1| & q_1 \cdot a_2 & \cdots \\
 0 & 0 & |u_2| & \cdots \\
 0 & 0 & 0 & \vdots \\
 \end{pmatrix}
 \]

- The resulting Q and R have the form:
 \[
 Q = \begin{pmatrix}
 q_0 & q_1 & q_2 & \cdots \\
 q_1 & q_2 & \cdots & \vdots \\
 q_2 & \cdots & \ddots & \vdots \\
 \vdots & \ddots & & \vdots \\
 \end{pmatrix}, \quad R = \begin{pmatrix}
 |u_0| & q_0 \cdot a_1 & q_0 \cdot a_2 & \cdots \\
 0 & |u_1| & q_1 \cdot a_2 & \cdots \\
 0 & 0 & |u_2| & \cdots \\
 0 & 0 & 0 & \vdots \\
 \end{pmatrix}
 \]
Example 1

Find the eigenvalues and eigenvectors of the square matrix

\[
A = \begin{pmatrix}
1 & 4 & 8 & 4 \\
4 & 2 & 3 & 7 \\
8 & 3 & 6 & 9 \\
4 & 7 & 9 & 2
\end{pmatrix}
\]

```python
import numpy as np
from numpy.linalg import eigh

A = np.array([[1, 4, 8, 4], [4, 2, 3, 7], [8, 3, 6, 9], [4, 7, 9, 2]], float)

# Just for comparison
xx, VV = eigh(A)

print("Result using numpy.linalg")
print("xx=", xx)
print("VV=", VV)

# Implementation of QR decomposition
epsilon = 1.0e-10
n = A.shape
```
Example II

```python
N=n[1]
V=np.zeros([N,N], float)
U=np.empty([N,N], float)
Q=np.empty([N,N], float)
R=np.empty([N,N], float)

# Initialize V
for i in range(N):
    V[i,i]=1.0

delta=1.0
while delta>epsilon:
    for i in range(N):
        U[:,i]=A[:,i]
        if i>0:
            for j in range(i):
                U[:,i]−=(np.dot(Q[:,j], A[:,i])*Q[:,j])
            magU=np.dot(U[:,i],U[:,i])**((1/2))
            Q[:,i]=U[:,i]/magU

# Computing R matrix
for j in range(N):
    for k in range(N):
        if j>k:
            R[j,k]=0
```
Example III

```python
elif j==k:
    R[j, k] = np.dot(U[:, j], U[:, j])** (1/2)
else:
    R[j, k] = np.dot(Q[:, j], A[:, k])

# print("R=", R)
A= np.dot(R, Q)
V= np.dot(V, Q)
delta = 0.0
for j in range(N):
    for k in range(N):
        if j<k:
            if delta < abs(A[j, k]):
                delta = abs(A[j, k])
            # print("delta=", delta)
            # input()
x= np.empty(N, float)
for i in range(N):
    x[i] = A[i, i]

print("\n--- Result obtained from my QR decomposition code ---")
print("x=", x)
print(V)
```