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Simultaneous Linear Equations |

@ Simultaneous set of linear equation:

e One can solve the equation by using paper and a pen!
o But if there are many variables, then the procedure is very tedious.

@ Moreover, humans are slow and prone to error in such tedious calculations.

Example: four simultaneous equations with four variables, w, z,y and z.
Qw4r+4+z=—4,

Jw+dr —y—z=3,
w—4r+y+52=29,

2w—2rx+y+32="7 (1)
In matrix form
2 1 4 1 w —4
3 4 -1 -1 x 3
1 -4 1 5 y |~ 9 | (2)
2 =2 1 3 z 7
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Simultaneous Linear Equations

Simultaneous Linear Equations Il

Alternatively, in a shorthand form:
Ax =, 3)

where x = (w, x,y, z) and the matrix A and vector v take the appropriate values.
Then find the solution:

x=A"lv. (4)

But the problem is finding A~! is not so trivial using computer.
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SHUTIEGCLTER RO EETR SCIELTLIERN Gauss-Jordan Elimination

Gauss-Jordan Elimination

@ The most straightforward method to find the solution of Eq. (3).

@ Two rules for Gauss-Jordan elimination:
© If we multiply any row of the matrix A by any constant, and we multiply the
corresponding row of the vector v by the same constant, then the solution

does not change.
@ If we add to or subtract from any row of A a multiple of any other row, and
we do the same for the vector v, then the solution does not change.
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Exmaple:Eq. (2) |

As for an example, let's try to solve Eq. (2) by hand:
@ Divide the first row by the top-left element of the matrix:

1 0.5 2 0.5 w -2
3 4 -1 -1 T 3
1 =4 1 5 y |~ 9 (5)
2 =2 1 3 z 7
@ Subtract 3 times the first row from the second row:
1 0.5 2 0.5 w —2
0 25 -7 =25 T 9
1 —4 1 5 Y - 9 (6)
2 -2 1 3 z 7
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Exmaple:Eq. (2) I

@ Subtract the first row from the third one, and also subtract 2 times the first
row from the fourth:

1 05 2 05 w -2
0 25 -7 =25 x | 9 )
0 —45 -1 45 y | 11
0 -3 -3 2 z 11
@ Divide the second row by 2.5:
1 05 2 05 w -2
0 1 -28 -1 x| _| 36 )
0 —45 -1 45 Y 11
o -3 -3 2 z 11
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Exmaple:Eq. (2) Il

@ Subtract —4.5 times the second row from the third, and —3 times the second
row from the fourth:

1 05 2 05 w -2

0o 1 =28 -1 z | 3.6 9)
0 0 —-136 0 y | | 272 |

0 0 —-114 -1 z 21.8

@ Divide the third row by —13.6:

1 05 2 05 w -2

0o 1 =28 -1 x 3.6

0 0 1 0 y | -2 (10)
0o 0 —-114 -1 z 21.8
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Exmaple:Eq. (2) IV

@ Subtract —11.4 times third row from the fourth:

1 05 2 05 w -2
0 1 —-28 -1 x 3.6
0 O 1 0 Y -2 | (11)
0 O 0 -1 z -1
@ Divide the fourth row by —1:
1 05 2 05 w -2
0 1 —-28 -1 x 3.6
0 O 1 0 y | | -2 | (12)
0 O 0 1 z 1

By definition, Eq. (12) has the same solution with Eq. (2), but the matrix is now
upper triangular.
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Backsubstitution
Backsubstitution |

@ To find the final solution of Eq. (2) we now use the process of

backsubstitution.

@ Suppose we have any set of equations of the form:

1 ap1 ap2 ap3 w Vo
0 1 a2 a3 x _ U1
0 0 1 aps y || v
0 0 0 1 z V3
e Eq. (13) can be written as:
W+ a1 + a2y + ap3z = o,
T+ a2y + a3z = v,
y+azsz = vy,
zZ = Us.
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Backsubstitution
Backsubstitution 1l

Q@ From Eq. (17):

@ From Eq. (16)
Yy =v2 —az3z
© From Eq. (15)
T =01 — a12y — a132
Q From Eq. (14)

W = Vo — a1 — ap2Yy — Go3z

e Applying Egs. (18)-(21) we obtain:
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SHUTIENCLTER RO EETA SR EE  Backsubstitution

Example 6.1: |

Guassian elimination for Eq. (2):

from numpy import array, empty

A=array ([[2,1,4,1],
[3,4,—1,-1],
[1,—4,1,5],
[2,—-2,1,3]],float)

v=array ([—4,3,9,7], float)
N=len (v)

# Gaussian Elimination
for m in range(N):
# Divide by the diagonal element
div=A[m,m]
Alm,:]/=div
v[m]/=div

# Subtract fro the lower rows

for i in range(m+1,N):
mult=A[i m]
Ali,:]—=mult*A[m, :]
v[i]==multxv[m]

# Backsubtraction
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Example 6.1: [l

x=empty (N, float)

for m in range(N—1,—1,—1):
x [m]=v [m]
for i

in range(m+1,N):
x [ml—=A[m, i]*x[i]
print (x)

=] = - = = A




Pivoting
Pivoting |

Now let's consider the equations:

0 1 4 1 w —4
3 4 -1 -1 T 3
1 —4 1 5 y o 9 (23)
2 =2 1 3 z 7

@ Here the first element of the first row is zero!

@ This causes a problem to apply Gauss-Jordan elimination.
e Divide by zero is not allowed.
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Pivoting
Pivoting |l

Pivoting

Exchange rows:

3 4 -1 -1 w 3
0 1 4 1 T —4
1 —4 1 5 y o 9 (24)
2 =2 1 3 z 7

Partial Pivoting
With partial pivoting, we consider rearranging the rows at each stage.

@ When we get to the mth row, we compare it to all lower rows, looking at the
value each row has in its mth elements and finding the one such value that is
the farthest from zero—either positive or negative.

@ If the row containing this winning value is not currently mth row, then we
move it up to mth place by swapping it with the current mth row.
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Simultaneous Linear Equations B TE0T:3

Example—Exercise6.2 |

Solve Eq. (23) using Gauss-Jordan elimination with partial pivoting.

from numpy import array, empty
A=array ([[0,1,4,1],
[3,4,—1,-1],
[1,—4,1,5],
[2,—-2,1,3]],float)

v=array ([—4,3,9,7], float)
N=len (v)

# Gaussian Elimination
for m in range(N):
# Applying partial pivoting
pivot-max=abs (A[m,m])
pivot_point=m
for i in range(m+1,N):
pivot_tmp=abs (A[i ,m])
if pivot_.tmp>pivot_max:

pivot_point , pivot_max=i, pivot_tmp
if ml=pivot_point:

for i in range(N):

A[m,i],A[pivot_point ,i]=A[pivot_point ,i] ,A[m,i]
v[m],v[pivot_point]=v[pivot_point],v[m]
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Simultaneous Linear Equations B TE0T:3

Example—Exercise6.2 Il

print (A)

input ()

# Divide by the diagonal element
div=A[m,m]

A[m,:]/=div

v[m]/=div

# Subtract fro the lower rows

for i in range(m+1,N):
mult=A[i ,m]
Ali,:]—=mult*A[m, :]
v[il-=multxv[m]

# Backsubtraction
x=empty (N, float)
for m in range(N—1,—-1,—1):
x [m]=v [m]
for i in range(m+1,N):
x [m—=A[m, i]xx[i]

print(x)

Soon-Hyung Yook Chap. 6

May 29, 2017

17 / 62



Gauss-Jordan Elimination in Matrix Form |

@ Basically based on the Gauss-Jordan elimination method.

@ Powerful when we have to solve many different sets of equations Ax = v
with the same matrix A but different right-hand sides v.

o Repeating Gauss-Jordan elimination would be time-consuming.

Suppose we have a 4 x 4 matrix

ao1
a1
a1
asi

o2
a12
22
a32

ao3
a13

25
s (25)
a33

The Gauss-Jordan elimination is written as a matrix form:

Step 1:

1
1| —aw
apo —azo0

—aso

ao1
ail
az1
asy

aop2
a2
az2
asz

ao3 1 bor bo2 bos
ais _ 0 bir biz bis
a23 - 0 b21 b2z b2 (26)
aszs 0 b31 b3z b3
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Gauss-Jordan Elimination in Matrix Form 1l

Define a lower triangular matrix Ly as

1 0 0 0

1 —aip app 0 0
agp | —a20 0 aoo 0
—asp 0 0 apo

Step 2:

b11 0 0 0

1 o 1 0 o0
bi1 0 —b21 b1 0
0 —bs 0 b1

Define another lower triangular matrix L as

bo1  boz  bos 1 co1 coz co3
b1 biz  bis _ 0 1 ciz2 ci3 (28)
ba1 b2z bos 0 0 coa co3

0

bz1  bz2 b33 0 c32 33

[oReNeN g

b11 0 0 0

1 0 1 0 0
L= — 29
Y 0 —by b O (29)
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

Gauss-Jordan Elimination in Matrix Form Il|

Step 3:
cao 0 0 0 1 co1 coz co3
L 0 C22 0 0 0 1 Cc12 C13 _
Coo 0 0 1 0 0 0 co2 ca3 -
0 0 —c32 co22 0 0 «c¢32 c33
And define Ly as
C22 0 0 0
L2 _ 1 0 C22 0 0
m | 0 0 1 0
0 0 —c32 coo
Step 4:
dss 0 0 0 1 do1 do2 dos
L 0 dss 0O 0 0 1 dia di3 _
das 0 0 dsz O 0 0 1 das -
0 0 0o 1 0 0 0 dss

[eNeRon s

do1

uUo1
1

0

1
0
0

do2
di2

uo2
w12

0

1
0

dos
dis
30
doa (30)
ds3
(31)
uo3
u13
. (32)
1
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

Gauss-Jordan Elimination in Matrix Form IV

Define L3 as

dss 0 0 0
1 0 dss 0 0
L; = — 33
57 dss 0 0 ds3 O (33)
0 0 0 1
Step 1-Step 4 are mathematically written as
LsLoLi LA
Therefore, we solve our original set of equations Ax = v by multiplying
L3L2L1L0 as
L3L2L1L0Ax = L3L2L1L0V (34)

Then apply the backsubstitution.
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

LU Decomposition |

In practice, we don’t need to have all four matrix Ly, L; Ly, and Ls.
@ Define two matrices:

L=L;'L'L;'L; Y, U = L;LyL; LoA (35)

Note that U is the upper triangular matrix (right-hand side of Eq. (32)).
Multiplying L and U gives

LU=A (36)

@ Form the original set of equations, Ax = v,
LUx=v (37)
@ Note that L is lower triangular matrix.
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LU Decomposition I

@ Consider the matrix Ly for example:

@ Inverse of L is

@00

-1 aio
Lo

a20

a3o

LU Decomposition

0 0 0
apo 0 0
0 apo 0 (38)
0 0 apo
0 0 0
100
01 0 (39)
0 0 1

It can be easily verified by showing LOL(]1 =1, where I is an identity matrix

(or more precisely see Boas's book).

Soon-Hyung Yook Chap. 6 May 29, 2017 23 /62



LU Decomposition
LU Decomposition Il

@ Similarly,
1 0 0 0 1 0 0 0 1 0 0 0
~1_ [ 0 by 0 O 1| 0 1 0 0 1[0 1 0 0
Li =10 by 1 0 L =10 0 e 0 Lo=10 0 1 o
0 b31 0 1 0 0 C32 1 0 0 0 d33
o Multiplying them all together:
aopo 0 0 0
ey e — 1 — a b 0 0
L — L() 1L1 1L2 1L3 1 —_ 10 11 (41)
azo ba1  c2 0

azo b3 c32 ds3

@ Not only is L is lower triangular, but its elements are easily obtained through
Gauss-Jordan elimination.
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

LU Decomposition-Backsubtraction |

To find a rule for backsubstitution, let's consider a 3 x 3 matrix A.
@ The LU decomposition of A looks like:

ago Go1 Qo2 loo 0 O Ugy Uol Uo2
A=\ aw a1 a2 | = lio lix O 0 win w2 |.(42)
azo G21  G22 lag la1 a2 0 0 o
@ Then the linear equations Ax = v becomes
loo 0 O Ugo Upl Uo2 ) Vg
ll() 111 0 0 U1 U112 I V1 . (43)
loog lo1 oo 0 0 wu T v
@ Define a new vector y as
Upp U1  UO2 Zo Yo
0 w1 w2 1 | =1 v |- (44)
0 0 w2 T2 Yo
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LU Decomposition
LU Decomposition-Backsubtraction I

@ Then Eq. (43) becomes

loo 0 0 Yo vy
lio liu O yi | =1 v |- (45)
lag la1 a2 Y2 U

@ From the first line of Eq. (45), looyo = vo. Thus
v
Yo =1 (46)
00

@ From the second line of Eq. (45), lioyo + l11y1 = v1, or

—1
Y1 = U1 10Y0 ) (47)
I
@ From the third line of Eq. (45) gives
—1 —1
Yo = V2 — 120Y0 21y1. (48)

l 22
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LU Decomposition
LU Decomposition-Backsubtraction Il

General Representation of y

1—1
v — >0 bigYi

L. (49)

Yi =

@ Applying partial pivoting is also trivial.

However, the simplest way to implement LU decomposition and backsubstitution
is to use the solve function in numpy.linalg package like this:

from numpy.linalg import solve
x=solve(A,v)
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

LU Decomposition: Example |

Solve Eq. (23) using LU decomposition with partial pivoting.

from numpy import array,h zeros, empty,copy, dot
from numpy.linalg import solve

A=array ([[0,1,4,1],
[3,4,—1,-1],
[1,-4.1,5],
[2,—-2,1,3]],float)

v=array ([—4,3,9,7], float)

N=len (v)

L=zeros ([N,N], float)

U=empty ([N,N], float)

U=copy (A)

print ("A="A)

print ("U=",U)

# Gaussian Elimination with LU decomposition
for m in range(N):
# Applying partial pivoting
pivot_max=abs(U[m,m])
pivot_point=m
for i in range(m+1,N):
pivot_tmp=abs(U[i ,m])
if pivot_-tmp>pivot_-max:

Soon-Hyung Yook Chap. 6 May 29, 2017
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

LU Decomposition: Example [l

pivot_point , pivot_max=i, pivot_tmp
if ml=pivot_point:
for i in range(N):

U[m, i],U[pivot_point ,i]=U[pivot_point ,i] U[m,i]
L[m,i],L[pivot_point ,i]=L[pivot_point ,i] ,L[m i]
A[m, i] ,A[pivot_point ,i]=A[pivot_point ,i],A[m,i]

v[m],v[pivot_point]=v[pivot_point],v[m]
L[m: ,m|=U[m: ,m]

# Divide by the diagonal element
div=U[m,m]
U[m,:]/=div

# Subtract from the lower rows

for i in range(m+1,N):
mult=U[i ,m]
Uli,:]—=mult«U[m,:]

print ()
print (" fter._GE with_LUD")
print

)

(
(
(U=
print (
("L=" L)
(

print
print ()
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SHUTTENCLTER RO EETR SLIELTLIER LU Decomposition

LU Decomposition: Example Il

print ("A=" A)
print ()
print ("LU=",dot(L,U))

# Backsubtraction
y=empty (N, float)
for m in range(N):
y [m]=v [m]
for i in range(m):
y[m—=L[m, i]xy[i]
y[m]/=L[m,m]

x=empty (N, float)

for m in range(N—1,—-1,—1):
x[m]=y [m]
for i in range(m+1,N):

x [m—=U[m, i]sx[i]

x[m]/=U[m,m]

print("\n")

print ("x=",x)

print ("solve (A,v)=",solve(A,v))
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Calculating the Inverse of a Matrix |

Inverse of matrix:

1
Al = c’
detA (50)

where Cj; is cofactor of a;; (see the mathematical physics textbook).

@ But calculating the determinants are time consuming and prone to make
large error.

Apply the method to solve simultaneous linear equations.

Consider a form

AX =V, (51)

Now, X and V are N x N matrix as well as A.
o If V =1, then X is the inverse matrix of A.
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SHUTIENCLTER RO EETRSCIELTLIERN  Inverse of a Matrix.

Calculating the Inverse of a Matrix Il

Calculating the Inverse of a Matrix

Now we have to solve a set of IV simultaneous linear equations:
AX; =V, (52)

where j =0,1,--- N — 1.
@ X is the jth column of matrix X.
@ V; is the jth column of matrix V.
@ Weset V=L

@ Then we can apply the Gauss-Jordan elimination or LU decomposition
method for each column vector X; and V.

e By combining X;'s we can obtain X = A~
Of course we can also use inv function in numpy.linalg package as:

from numpy.linalg import inv
X=inv (4)
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Inverse of a Matrix
Inverse Matrix: Example |

Find A~! in Eq. (23) using LU decomposition with partial pivoting.

from numpy import array,zeros ,hempty, copy, dot
from numpy.linalg import inv

A=array ([[0,1,4,1],
1.

[2 —2 1) 3]] float)
n=A.shape
N=n[1]
L=zeros ([N,N], float)
U=empty ([N,N], float)
U=copy (A)
V=zeros ([N,N], float)
for m in range(N):
V[m,m]=1.0

print ("A="A)
print ("U=",U)
print ("V="V)
print(”lnv(A)f ,inv (A)) # for comparison

# Gaussian Elimination with LU decomposition
for m in range(N):
# Applying partial pivoting
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SHUTIENCLTER RO EETRSCIELTLIERN  Inverse of a Matrix.

Inverse Matrix: Example I

pivot_-max=abs (U[m,m])
pivot_point=m
for i in range(m+1,N):
pivot_tmp=abs(U[i ,m])
if pivot_.tmp>pivot_max:
pivot_point , pivot_max=i, pivot_tmp
if ml=pivot_point:
for i in range(N):
U[m,i],U[pivot_point ,i]=U[pivot_point ,i]
L[m,i],L[pivot_point ,i]=L[pivot_point ,i],
A[m,i] ,A[pivot_point ,i]=A[pivot_point ,i],
V[m,i],V[pivot_point ,i]=V[pivot_point ,i]

L[m: ,m|=U[m:,m]

# Divide by the diagonal element
div=U[m,m]
U[m,:]/=div

# Subtract from the lower rows

for i in range(m+1,N):
mult=U[i ,m]
Uli,:]—=mult«U[m,:]

# Now we have L and U
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SHUTIENCLTER RO EETRSCIELTLIERN  Inverse of a Matrix.

Inverse Matrix: Example Ill

Y=empty ([N,N], float)

for j in range(N): # for each column
for m in range(N): # for each row
Yim, j]=V[m, j]
for i in range(m):

Y{m, jl==L[m, i]xY[i ]
Yim, j1/=L [m,m]

X=empty ([N,N], float)
for j in range(N):
for m in range(N—1,—-1,—1):
X[m, jl=Y[m,j]
for i in range(m+1,N):
X[m, j]==U[m, i [«X[i,]j]
X[m, j]/=U[m,m]

print ("\n")
print ("X=",X)

Soon-Hyung Yook Chap. 6 May 29, 2017 35/ 62



EHUTIENCLITER RO EETR SGIERL AR Tridiagonal and Banded Matrices

Tridiagonal Matrices: Trigonal Matrix Algorithm or
Thomas Algorithm

A special case that arise often in physics problems is the solution of Ax = v when
the matrix A is tridiagonal:

apo aopl 0 0 0
aip ain a2 O 0
A= 0 a21 Q22 0423 0 . (53)
0 0 az2 azz as4
0 0 0 Q43 Q44

@ The matrix has nonzero elements only along the diagonal and immediately
above and below it.

@ Simple Gauss-Jordan elimination is a good choice for solving the problem.
o Quick
e pivoting is typically not used
@ Thus, the programming is straightforward.
e We do not need to go through the entire Gauss-Jordan elimination process.
@ Each row only need to be subtracted from the single row immediately below it —
and not all lower rows — to make the matrix triangular.
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Tridiagonal and Banded Matrices
[llustration: How to Make the Matrix Triangular |

Consider a 4 x 4 matrix:

2 1 0 0
3 4 -5 0

A= 0 -4 3 5 (54)
0 O 1 3

@ Step 1: Divide the first row by 2, then subtract 3 times the result from the

second row:
1 05 0 0
0 25 -5 0
0 —4 3 5 (55)
0 0 1 3
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Tridiagonal and Banded Matrices
lllustration: How to Make the Matrix Triangular I

@ Step 2: Divide the second row by 2.5 and subtract —4 times the result from
the third row:

1 05 00
0 1 =20
0 0 -5 5 (56)
0O o 1 3
© Step:3 Divide the third row by —5 and subtract it from the fourth row:
105 0 0
o 1 -2 0
o 0 1 -1 (57)
o o0 0 4
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Tridiagonal and Banded Matrices
lllustration: How to Make the Matrix Triangular Ill

@ Step 4: Divide the fourth row by 4 ,then we obtain upper triangular matrix:

105 0 0
0 1 -2 0
0 0 1 -1 (58)
0 0 o0 1

o Note that green colored elements are not changed when subtracting some
constant multiple of the above row.

@ Use this fact to reduce the computing time.
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Tridiagonal and Banded Matrices
[llustration: Backsubstitution |

The matrix form after the Gauss-Jordan elimination:

1 ap 0 0 Zo Vo

0 1 ai12 0 X1 o U1

0 0 1 a3 T2 - Vo (59)

0 0 0 1 T3 v3

Solution:

I3 = V3 (60)
T2 = V2 — a23T3 (61)
Ty = v — 1Ty (62)
To = Vg — apiTi. (63)

This algorithm is known as trigonal matrix algorithm or Thomas algorithm.
@ Note that the cyan colored elements do not work anything in the .
@ They just become 0.

o Just keep in mind this and never use the cyan colored elements during the
back substitution to reduce computing time.
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Tridiagonal and Banded Matrices
Banded Matrix

The matrix A is banded, if it is similar to a trigonal matrix but can have more
than one nonzero elements to either side of the diagonal, like this:

apo  Qpil ap2 0 0 0 0
aip air a2 a3z 0 0 0
azop az1 a2 a3 az 0 0
A= 0 az1 az2 asz ass aszxs O (64)
0 0 a42 @43 Qa4 Q45 Qg
0 0 0 as3 ass ass ase
0 0 0 O Qg4 aes g6

@ The method to solve such equation is also similar to that for triangular
matrix.
@ But the backsubstitution is more complicated.

e Such complication makes the calculation little bit slower than that for
triangular matrix.

o But still be faster than the general algorithm such as solve in numpy.linalg
package.
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Example 6.2: Vibration in a One-Dimensional System |

Suppose we have a set of [V identical masses in a row, joined by identical linear
spring as:

We ignore gravity for simplicity.
o Let (; be the displacement of the ith mass relative to its equilibrium position.
@ Newton's equation:

¢

Mmoo k(Git1 — Gi) + E(Gim1 — G) + F (65)

where m is the mass and k is the spring constant.

o F; represents any external force acting on mass .
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Example 6.2: Vibration in a One-Dimensional System I

@ The masses at the two ends:

2
m% = k(2 — C1) + F1, (66)
2

mddfév =Fk(Cn—1 —CN) + Fh, (67)

o Assume that F} = Ce™? and F; =0 for all i > 1.
@ By assuming that the solution (; = x;e™! we obtain the N-coupled linear

equations:
—mwlz, = k(xe —x1) + C, (68)
— mwzxi = k($i+1 — l‘@) + k(CCi—1 - xi), (69)
—mw’ry = k(zn_1—zN), (70)

where 7 is in the range 2 < ¢ < N — 1.
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Example 6.2: Vibration in a One-Dimensional System IlI

@ Rearrange Eqgs. (68)-(70):

(e —k)xy —kzy = C, (71)
AT; — ki—l — kl‘i+1 = 0, (72
(a - ]i?){EN - kLUN,1 = 0, (73)
where a = 2k — mw?.
@ In matrix form:
(a—k) —k 1 C
—k a -k To 0
-k o -k T3 0
= . (74)
-k « —k IN_1 0
-k (a—k) TN 0

Solve Eq. (74) withm =1, k =6, and w = 2.
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Example 6-2: Solution |

Direct transform of Step1-Stepb:

from numpy import zeros, empty
from pylab import plot, show
from numpy.linalg import solve

# Constants

N=26

C=1.0

m=1.0

k=6.0

omega=2.0
alpha=2xk—mxomega**2

# Set up the initial values of the array
A=zeros ([N,N], float)
for i in range(N—1):

Ali,i]=alpha

Ali, i+1]=—k
Ali+1,i]=—k
A[0,0] —=k

A[N—1,N—1]=alpha—k

v=zeros (N, float)
v[o]=C
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EHUTIENCLITER RO EETR SGIERL AR Tridiagonal and Banded Matrices

Example 6-2: Solution Il

# To compare the results with numpy.linalg
xx=solve (A,v)

# Peform The Gauss—Jordan Elimination
for i in range(N—1):
# Divide row i by its diagonal element
div=A[i,i]
Ali,i+1]/=div
v[i]/=div

# Now subtract it from the next row down
if i=N-2:

n=2
else:

n=3
a_tmp=A[i+1,i]
for j in range(n):

A[i+1,i+j]—=A[i, i+j]*a_tmp
v[i+l]—=a_-tmpx*v[i]

# Divide the last element of v by the

last diagonal element
v[N—1]/=A[N—1,N—1]

# Backsubstitution
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Example 6-2: Solution Il

x=empty (N, float)

x [N=1]=v[N—-1]

for i in range(N—2,—-1,—1):
x[i]=v[i]-Ali,i+1]*x[i+1]

# Plot the results
plot(x)

plot(x,”ko” ,ms=15.0)

plot(xx,”rs”

show ()

o = = z 9ac
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Example 6-2: Solution IV
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Tridiagonal and Banded Matrices
Example 6-2: Modified Version |

Applying the cyan and red colored parts:

from numpy import zeros, empty
from pylab import plot, show
from numpy.linalg import solve

# Constants

N=26

C=1.0

m=1.0

k=6.0

omega=2.0
alpha=2xk—mxomega**2

# Set up the initial values of the array
A=zeros ([N,N], float)
for i in range(N—1):

Ali,i]=alpha

Ali, i+1]=—k
Ali+1,i]=—k
A[0,0] —=k

A[N—1,N—1]=alpha—k

v=zeros (N, float)
v[o]=C
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Tridiagonal and Banded Matrices
Example 6-2: Modified Version I

xx=solve (A,v)

# Peform The Gauss—Jordan Elimination
for i in range(N—1):
# Divide row | by its diagonal element
Ali, i+1]/=Ali,i]
v[i]/=A[i,i]

# Now subtract it from the next row down
Ali+1,i41]—=A[i+1,i]*A[i,i+1]
v i+1l]—=A[i+1,i]*v][i]

# Divide the last element of v by the last diagonal element
v[N—1]/=A[N—1,N—1]

# Backsubstitution

x=empty (N, float)

x [N=1]=v[N—-1]

for i in range(N—2,—1,—1):
x[i]=v[i]-Ali,i+1]*x[i+1]

# Plot the results
plot(x)
plot(x,”ko™)
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Example 6-2: Modified Version Il

plot(xx,”rs")
show ()

=] = = = A



Eigenvalues and Eigenvectors

Eigenvalue problems are common in physics.

e Mechanics

o Electromagnetism

e Quantum mechanics

e etc.
Most eigenvalue problems in physics concern real symmetric matrix or
Hermitian matrix when complex numbers are involved.

Focus on a real symmetric matrix A.

The eigenvector v satisfies:

Av = )\v, (75)
where )\ is the corresponding eigenvalue.
For N x N matrix, there are N eigenvectors, vy, va, ---, vy with
eigenvalues A1. Ao, -+, An.
Eigenvectors for symmetric matrix are orthogonal and we will assume they

are normalized, i.e., v; - v; = d;;. Here ;; is Kronecker delta.
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QR Decomposition

@ Let V be an N x N matrix whose #th column corresponds to the ith
eigenvector v;.

@ In a matrix form Eq. (75) can be written as
AV = VD, (76)

where D is the diagonal matrix with the eigenvalues \; as its diagonal entries.

o Note that the matrix V is orthogonal, thus VI =V~ so
VIv=vVvVT =1

QR Decomposition
@ Like the LU decomposition, rewrite the matrix A as the product QR, i.e.,

A=QR (77)

@ Q: an orthogonal matrix

@ R.: upper-triangular matrix

y
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Mathematics on QR Decomposition |

@ Suppose we have some way to calculate the matrices Q and R.

@ Let A be a real symmetric matrix then A can be written as:
A=QR, (78)
o Multiplying on the left by QT', we get
QA = Q{QiR: =Ry, (79)

where we use the fact that Q; is orthogonal.

@ Let us define a new matrix

A; =R;Q;. (80)
e Combining Egs. (79) and (80), we have
A =Q{AQ: (81)

@ Decompose A; as A; = QuRo,, then Ry = QTA ;.
S



Mathematics on QR Decomposition ||

@ Define a new matrix As as

A =R2Qo = QjA1Q: = Q) QI AQ:Q; (82)
@ Repeat the process up to total k steps then
A = QTAQ, (83)
A; = QJQIAQ.Q, (84)
As = QJQIQIAQQ:Qs, (85)
: (86)
Ar = (Qf--Q)A(Q: - Qu). (87)

@ As one continue this process long enought, the matrkx A} become diagonal.
e The off-diagonal elements get smaller and smaller the more iterations of the
process on do until they eventually reach zero— or as close to zero as makes no
difference.
e With given accuracy we can obtain diagonalized matrix Ay.
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Mathematics on QR Decomposition |lI

e The matrix A approximates a diagonal matrix D in Eq. (76)

o Let us define the additional matrix:
k
V=QQ Q=[] (88)
i=1
@ Then from Eq. (87) we have
D=A; =VTAV. (89)
@ Multiplying on the left by V:
AV = VD, (90)

which is exactly the same form of Eq. (76).
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Algorithm for QR Decomposition

QR Decomposition

Create an N x N matrix V to hold the eigenvectors.

Initialize V to be equal to the identity matrix I.

Choose a target accuracy ¢ for off-diagonal elements of the eigenvalue matrix.
Calculate the QR decomposition A = QR.

Update A to the new value A = RQ.

Multiply V on the right by Q.

Check the off-diagonal elements of A. If they are all less than ¢, we are done.
Otherwise go back to step 4.

©0000O0CO0

In numpy.linalg package, eigh() and eigvalsh() functions are also available
for the general purpose.
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How to Calculate Q and R |

Given N x N matrix A we can compute the QR decomposition as follows:

@ Let us think of the matrix as a set of N column vectors ag,ay, -+ ,ay_1.
A= ap a1 ag - . (91)
@ Define two new set of vectors ug,--- ,uxy_1 and qg, - ,qn_1 as follows

(Gram-Schmidt Orthogonalization):

ug = ag, Q0 = TuoT
u; =a; — (qo - a1)qo, A1 = o]
uy = as — (qo - a2)qo — (qi1 - a2)qs, qz = ‘3—;

and so forth.
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How to Calculate Q and R I

@ General form:

i1

w

u; = a; — Z(qj ' ai)qj? q; = |uZ|
Jj=0 v

[up] ao-ar qo-az

| | o | \ o 0 fw|  ar-ap
= ap air az = dqo0 4d1 Q2 0 0 [uz|
| | [ | \ o ) . .

up| qo-ar qo-az
I 0  |Jwm| q-ap
Q= a0 a1 9 - |, = 0 0 [us|
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Example |

Find the eigenvalues and eigenvectors of the square matrix

> 00 &
N W N
© O W oo
N © =1

import numpy as np
from numpy.linalg import eigh

A=np.array ([[1,4,8,4],[4,2,3,7],[8,3,6,9],[4,7.,9,2]],float)

# Just for comparison

xx ,VV=eigh (A)

print ("==_Result_using._numpy. linalg —=")
print (" xx=",xx)

print ("W=" W)

# Implementation of QR decomposition
epsilon=1.0e—10
n=A.shape
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Example I

N=n[1]

V=np.zeros ([
U=np.empty ([
Q=np.empty ([
R=np.empty ([
# Initialize V
for i in range(N):
V[i,i]=1.0

N,NJ], float)
N,N]J, float)
N,N]J, float)
N,NJ], float)

delta=1.0
while delta>epsilon:
for i in range(N):
Ul:,i]=A[:,i]
if i>0:
for j in range(i):
U[: i]—=(np.dot (Q[:, j] . A[:,i])*Q[:,]])
magU=np.dot(U[:,i],U[:,i])*%(1/2)
Q[: . i]=U[: . i]/magV

# Computing R matrix
for j in range(N):
for k in range(N):
if j>k:
R[j.k]=0
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Eigenvalues and Eigenvectors

Example IlI

elif j=—k:
|R[j- k]=np.dot(U[:,j],U[:,j])**(1/2)

R[j . k]=np.dot(Q[:,j]. . A[: k])

#print ("R=",R)
A=np.dot(R,Q)
V=np.dot(V,Q)
delta=0.0
for j in range(N):

for k in range(N):
if j<k:
if delta<abs(A[j,k]):
delta=abs (A[j ,k])

#print (" delta=",delta)
#input ()

x=np.empty (N, float)

for i in range(N):

x[i]=Ali,i]
print ("\n: ~Result_obtained _from_my_QR_decomposition_code ")
print ("x=",x)
print (V)
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