Chapter 3
Graphics and Visualization

Soon-Hyung Yook

March 20, 2017
Table of Contents

1. Introduction
2. Graphics
3. Scatter Plots
4. Density Plots
5. 3D Graphics
Introduction

Two Main Types of Computer Graphics Used in Physics
1. Depiction of numerical data displayed on calibrated axes.
2. Scientific diagram and animation
The name *pylab* is a reference to the Matlab, whose graph-drawing features *pylab* is intended to mimic.

The *pylab* package is a part of a larger package called *matplotlib*.

pyplot has features for generating graph of many different types.

We will focus only on:
- line graphs
- scatter plots
- density (or heat) plots

http://matplotlib.org for *matplotlib* or full feature of *pylab*.
plot and show function

Two basic functions to create an ordinary graph.

```python
from pylab import plot, show
y = [1.0, 2.4, 1.7, 0.3, 0.6, 1.8]
plot(y)
show()
```

Plotting \((x, y)\) pair

```python
from pylab import plot, show
x = [0.5, 1.0, 2.0, 4.0, 7.0, 10.0]
y = [1.0, 2.4, 1.7, 0.3, 0.6, 1.8]
plot(x, y)
show()
```
Graphics

- plot $\sin x$ from $x = 0$ to $x = 10$

```python
from pylab import plot, show
from numpy import linspace, sin

x=linspace(0.0,10.0,100)
y=sin(x)
plot(x,y)
show()
```

- Here we use \sin function from numpy.
- \sin function in numpy is a special version of sine that works with arrays.
- similar with `map(sin,x)` (here \sin is from math package)
Graphics: Read Data from File

```python
from numpy import loadtxt
from pylab import plot, show

data=loadtxt("values.dat", float)
x=data[:,0]
y=data[:,1]
plot(x, y)
show()
```

- we use `loadtxt` function to load data from text file.
- `data[:,0]`, `data[:,1]` are array slicing.

More concisely:

```python
from numpy import loadtxt
from pylab import plot, show

data=loadtxt("values.dat", float)
plot(data[:,0], data[:,1])
show()
```
from pylab import plot, show
from math import sin
from numpy import linspace

xpoints = []
ypoints = []
for x in linspace(0, 10, 100):
 xpoints.append(x)
 ypoints.append(sin(x))
plot(xpoints, ypoints)
show()
from pylab import plot, show, ylim
from numpy import linspace, sin

x = linspace(0.0, 10.0, 100)
y = sin(x)
plot(x, y)
ylim(-1.1, 1.1)
show()
Graphics: xlabel, ylabel

```python
from pylab import plot, show, ylim, xlabel, ylabel
from numpy import linspace, sin

x=linspace(0.0,10.0,100)
y=sin(x)
plot(x,y)
ylim(-1.1,1.1)
xlabel(r'$x$', fontsize=20)
ylabel(r'$\sin x$', fontsize=20)
show()
```
from pylab import plot, show, ylim, xlabel, ylabel
from numpy import linspace, sin, cos

x=linspace(0.0,10.0,100)
y=sin(x)
plot(x,y,'g--')
y=cos(x)
plot(x,y,'ro')
ylim(-1.1,1.1)
xlabel(r'\(x\)', fontsize=20)
ylabel(r'\(\sin x, \cos x\)', fontsize=20)
show()

- \LaTeX{} is working with python.
- Similar to the math editor in HWP.
Use symbols for plot.

- `plot(x,y,"ko")`, `plot(x,y,"k.")`
- Alternatively, `pylab` provides the function `scatter`.

```python
from pylab import scatter, show, xlim, ylim, xlabel, ylabel
from numpy import loadtxt

data=loadtxt("stars.txt",float)
x=data[:,0]
y=data[:,1]
xlabel="Temperature"
ylabel="Magnitude"
xlim(0,13000)
ylim(-5,20)
scatter(x,y)
show()
```
Use `imshow` function.

```python
from pylab import imshow, show
from numpy import loadtxt
data=loadtxt("circular.txt",float)
imshow(data)
show()
```

- Note that the numerical labels on the axes reflect the array index \((i, j)\) for \(data[i,j]\).
- The origin of the figure is at top left corner.
- The vertical axis increasing downwards.
- The array element \(data[i,j]\) are written with the row (vertical) index first and the column (horizontal) index second, like the matrix: i.e., \((i, j)\) corresponds to \((y, x)\) pair.
 - Convert the coordinate into \((x, y)\) pair.
Density Plots II

- Use an additional argument for the `imshow` function to flip the density plot top-to-bottom:

```python
imshow(data, origin="lower")
```

```python
from pylab import imshow, show
from numpy import loadtxt
data = loadtxt("circular.txt", float)
imshow(data)
show()
```

- the function `gray()` changes the color mode into gray mode.

```python
from pylab import imshow, show
from numpy import loadtxt
data = loadtxt("circular.txt", float)
imshow(data)
gray()
show()
```

- `jet, gray, hot, spectral, bone, hsv` with color scheme `redblue, redwhiteblue, inversegray, etc.`
Density Plots III

- for details see the textbook or visit matplotlib.org.
- more options for imshow function:
 - Change the beginning and end of the horizontal and vertical scale:
    ```python
    imshow(data, origin="lower", extent=[0,10,0,5])
    ```
 - Change the aspect ratio:
    ```python
    imshow(data, origin="lower", extent=[0,10,0,5], aspect=2.0)
    ```
 - `imshow` also combined with `xlim`, `ylim`
See the textbook but it has some problem...