
Chapter 2
Python Programming for Physicists

Soon-Hyung Yook

March 31, 2017

Soon-Hyung Yook Chapter 2 March 31, 2017 1 / 52

Table of Contents I

1 Getting Started

2 Basic Programming
Variables and Assignments
Variable Types
Output and Input Statements
Arithmetic
Functions, Packages, and Modules
Built-in Functions
Comment Statements

3 Controlling Programs with “if” and “while”
The “if” statement
The “while” statement
Break and Continue

4 Lists and Arrays
Lists
Arrays
Reading an Array from a File

Soon-Hyung Yook Chapter 2 March 31, 2017 2 / 52

Table of Contents II

Arithmetic with Arrays
Slicing

5 User-Defined Function

Soon-Hyung Yook Chapter 2 March 31, 2017 3 / 52

Getting Started

Why Python?

easy to learn

simple to use

enormously powerful

We will only focus on the core structure of the language for computational physics.
More details are easily found from on-line documents or many text book for
python.

e.g. www.python.org

Soon-Hyung Yook Chapter 2 March 31, 2017 4 / 52

Getting Started

Getting Started

Code

A python program consists of a list of instructions, resembling a mixture of
English words and mathematics. The list of instructions are collectively referred to
as code.

Development Environment

When you are programming, you typically work in a window or windows on your
computer screen that show the program you are working on and allow you to enter
or edit lines of code. Such window or windows are usually called as development
environment. One popular development environment for python is IDLE.(But I
will not use it in this class.)

Python Version

Check the python version by typing:

python --version

Soon-Hyung Yook Chapter 2 March 31, 2017 5 / 52

Getting Started

Python Shell

Just type

python3

then it will show some text like:

Python 3.5.2 (default, Sep 14 2016, 11:28:32)

[GCC 6.2.1 20160901 (Red Hat 6.2.1-1)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

The symbol “>>>” is a prompt.

Soon-Hyung Yook Chapter 2 March 31, 2017 6 / 52

Getting Started

First Program

Open any text editor and type the following two-line program into the editor:
x=1

print(x)

Save the python program as “example.py” (The name of python program
must end with “.py”.)
Run the following command:
python3 example.py

Also you can do the same thing in python shell.

There are some other ways to do the same thing.

Soon-Hyung Yook Chapter 2 March 31, 2017 7 / 52

Basic Programming

What is the program?

instruction ⇐⇒ statement

A program is a list of statements, which the computer usually executes in the
order they appear in the program.

Soon-Hyung Yook Chapter 2 March 31, 2017 8 / 52

Basic Programming Variables and Assignments

Variables and Assignments

Quantities on interest in a program are represented by variables.

Variables can be numbers, sets of numbers, etc.

Variables roughly do the same role as in ordinary algebra.
Our first example
x=1

is an assignment statement.

In normal algebra the variable names are usually just a single letter like x.
In many programming languages, the variable names can have two, three, or
more letters.
Physics_101, energy, x, y, z, t

are examples of allowed variables.
4Scores&7Years

is an example, which is NOT allowed as a variable name, because of &.

In python, variable name is case sensitive.

Naming the variable is very important!

Soon-Hyung Yook Chapter 2 March 31, 2017 9 / 52

Basic Programming Variable Types

Variable Types

Integer

Float

Complex: 1.2+0.6j Note that we use j for imaginary number!

String

The type of a variable is set by the value that we give it.

How to change the variable type

x=1

type(x)

x=1.5

type(x)

Changing the variable type in a single program is not recommended.

Good programming style: use a variable to store only one type of quantity in
a given problem

see also “x=float(1)”(assign a floating point value to x), “x=complex(1.5)”.

Soon-Hyung Yook Chapter 2 March 31, 2017 10 / 52

Basic Programming Variable Types

Variable Types

String

x="This is a string"

x="1.234"

How to change a string into a number?

x="1.234"

y=float(x)

Location of the space: “x = 1” is the same with “x=1”.
Space at the beginning of the line: function, loop

Soon-Hyung Yook Chapter 2 March 31, 2017 11 / 52

Basic Programming Output and Input Statements

Output Statement

“print” statement

x=1

print(x)

Another example:

x=1

y=2

print(x,y)

One can also use like this:

x=1

y=2

print("This value of x is",x,"and the value of y is",y)

With different types of variables and with option “sep”:

x=1

z=1+3j

print(x,z,sep="...")

Soon-Hyung Yook Chapter 2 March 31, 2017 12 / 52

Basic Programming Output and Input Statements

Input Statement

“input” statement

x=input("Enter the value of x: ")

When the computer executes the statement it does three things:

1. It prints out the quantity, if any, inside the parentheses.

2. It waits for the user to type a value on the keyboard.

3. Then the value that the user types is assigned to the variable “x”.

Example

x=input("Enter the value of x:")

print("The value of x is",x)

type(x)

Note that “x” is a string.

Soon-Hyung Yook Chapter 2 March 31, 2017 13 / 52

Basic Programming Output and Input Statements

Input Statement

Change the string into integer, float, or complex.

temp=input("Enter the value of x:")

x=float(temp)

print("The value of x is",x)

type(x)

or more concisely:

x=float(input("Enter the value of x:"))

print("The value of x is",x)

type(x)

Try also this:

Enter the value of x: Hello

ValueError: invalid literal for float(): Hello

Soon-Hyung Yook Chapter 2 March 31, 2017 14 / 52

Basic Programming Arithmetic

Arithmetic: Operators

Important Operators for Numerical Calculations

x=y assgin y to x

x+y addition

x-y subtraction

x*y multiplication

x/y division

x**y rasing x to the power of y

Additional Operators for Numerical Calculations

x//y the integer part of x divided by y (rounded down)

x%y modulo (can be used for float, but not for complex numbers)

Another Expressions for Operators

x+=y same with x=x+y

x-=y same with x=x-y

x*=y same with x=x*y

x/=y same with x=x/y

x//=y same with x=x//y

Soon-Hyung Yook Chapter 2 March 31, 2017 15 / 52

Basic Programming Arithmetic

Operators

Comparison Operators
x==y

x!=y

x<y

x<=y

x>y

x>=y

in... membership

Logical Operators

x and y

x or y

x not y

Soon-Hyung Yook Chapter 2 March 31, 2017 16 / 52

Basic Programming Arithmetic

Operators

Bitwise Operators

x|y Bitwise OR

x&y Bitwise AND

x^y Bitwise XOR

x>>y shift the bits of integer x rightwards y places

x<<y shift the bits of integer x leftwards y places

More on the assignment operator

x,y=1, 2.5 x,y=y,x

Example and Exercises in the book!

Soon-Hyung Yook Chapter 2 March 31, 2017 17 / 52

Basic Programming Functions, Packages, and Modules

Packages, Modules, Functions

Packages

collections of related useful things

Each package has its own name:

- e.g. math package

Modules

Some large packages are for convenience split into smaller subpackages

Such subpackages are usually called as modules.
A module in a larger package is referred to as
packagename.modulename

Function

Something like a black box.

Similar to the mathematical function.

Soon-Hyung Yook Chapter 2 March 31, 2017 18 / 52

Basic Programming Functions, Packages, and Modules

Mathematical Functions

Example of mathematical functions

log()

log10()

exp()

sin(),cos(),tan()

asin(),acos(),atan()

sinh(),cosh(),tanh()

sqrt

Usage I

import math # import the math package

y=math.sin(math.pi)

Usage II

from math import log # import log function from the math package

y=log(28.0)

Soon-Hyung Yook Chapter 2 March 31, 2017 19 / 52

Basic Programming Functions, Packages, and Modules

Mathematical Functions

Usage III

from math import log,pi,sin # import log, sin,pi from the math package

from math import * # import everything in the math package

Import from module

import numpy.linalg # import numpy.linalg module

from numpy.linalg import inv # import inv function in the numpy.linalg module

See Example 2.2

Soon-Hyung Yook Chapter 2 March 31, 2017 20 / 52

Basic Programming Built-in Functions

Built-in Functions

Built-in Functions

There are some functions in python which do not come from any package.

These functions are always available in every program.

No need to import them.

Examples:

x=float(1)

x=input("Enter the value of x: ")

print(x)

...

Exercises in the textbook.

Soon-Hyung Yook Chapter 2 March 31, 2017 21 / 52

Basic Programming Comment Statements

Comments

Comment starts with hash mark “#”.

Soon-Hyung Yook Chapter 2 March 31, 2017 22 / 52

Controlling Programs with “if” and “while” The “if” statement

The if statement

Example:

x=int(input("Enter the value x= "))

if x>10:

print("x>10")

else:

print("x<10")

Soon-Hyung Yook Chapter 2 March 31, 2017 23 / 52

Controlling Programs with “if” and “while” The “if” statement

The if statement

Example:

x=int(input("Enter the value smaller than 10: "))

if x>10:

print("Your number is greater than 10")

print("I will fix your number.")

x=5

print("x=",x)

Soon-Hyung Yook Chapter 2 March 31, 2017 24 / 52

Controlling Programs with “if” and “while” The “if” statement

The if statement: more elaborate example

if x>10:

print("Your number is greater than 10")

elif x>9:

print("Your number is OK, but you’re cutting it close.")

else:

print("Your number is fine.")

Soon-Hyung Yook Chapter 2 March 31, 2017 25 / 52

Controlling Programs with “if” and “while” The “while” statement

While

Example:

x=int(input("Enter the value smaller than 10: "))

while x>10:

print("Your number is greater than 10")

x=int(input("Enter the value smaller than 10: "))

print("x=",x)

Soon-Hyung Yook Chapter 2 March 31, 2017 26 / 52

Controlling Programs with “if” and “while” Break and Continue

Break and continue

Stop the loop.

while x>10:

print("the number is larger than 10. Please try again")

x=int(input("x="))

if x==100: # nested loop

break

continue: If there is continue in a loop will make the program skip the rest
of the indented code in the loop and goes back to the beginning of the loop.

The continue statement is used rather rarely in practice.

Example 2.4: Fibonacci sequence

Soon-Hyung Yook Chapter 2 March 31, 2017 27 / 52

Lists and Arrays

Lists and Arrays

In physics, we frequently use collectively a set of numbers A = {ai}.
Examples are a vector, matrix, and so on.

Python provides standard features, called containers, for storing collections of
numbers.

list, array, dictionary, tuple, set

Soon-Hyung Yook Chapter 2 March 31, 2017 28 / 52

Lists and Arrays Lists

Lists

List is the most basic type of container in python.

List is a list of quantities.

The quantities can be any type of data: integers, floats, strings, and so on.

elements

The quantities in a list.

Do not have to be all of the same type.

However, in most of the cases, we will deal with the elements with the same
type.

Usage

r=[1,1,2,3,5,8.13,21]

print(r)

Soon-Hyung Yook Chapter 2 March 31, 2017 29 / 52

Lists and Arrays Lists

Lists

Usage II

x=1.0

y=1.4

z=-3.1

r=[x,y,z]

print(r)

NOTE: The vale of x is changed later in the program the value of r will change
as well.

Change the value of element

r=[1.0,1.5,-2.2]

r[1]=3.2

print(r)

Note: The index for the elements starts from zero.

Soon-Hyung Yook Chapter 2 March 31, 2017 30 / 52

Lists and Arrays Lists

Lists

Built-in Function related to list

sum, max, min, len

r=[1.0,1.5,-2.2]

total=sum(r)

mean=sum(r)/len(r)

print(total)

print(mean)

map

a kind of meta-function

map creates a specialized object in the computer memory, called an iterator

from math import log

r=[1.0,1.5,-2.2]

logr=list(map(log,r))

print(logr)

Soon-Hyung Yook Chapter 2 March 31, 2017 31 / 52

Lists and Arrays Lists

Lists

append

Add a new element to the end of the list.

r.append(2.3)

del

Delete an element by offset.

del r[-1]

The negative index counts backward from the end of the list.

del is not a list method (OOP), but it is a python statement.

Soon-Hyung Yook Chapter 2 March 31, 2017 32 / 52

Lists and Arrays Lists

Lists

Create an empty list

r=[]

r.append(1.0)

r.append(1.4)

r.append(-3.2)

print(r)

pop method

Remove a value from the end of a list.

r=[1.0,1.5,-2.2,2.6]

r.pop()

print(r)

r.pop() is the same as r.pop(-1)

pop method is similar to the python statement del.

r.pop(0) removes the first item from the list.

Soon-Hyung Yook Chapter 2 March 31, 2017 33 / 52

Lists and Arrays Arrays

Arrays

Difference between lists and arrays:

1 The number of elements in an array is fixed. (One can not add or remove the
elements of array.)

2 The elements of an array must all be of the same type.
3 Arrays can be two-dimensional, like matrices in algebra.

Contradiction: List of list is also possible:

a=[[1,2,3],[3,4,5],[6,3,2]]

print(a[0][1])

4 Arrays behave roughly like vectors or matrices.(One can do some arithmetic
like adding them together, etc. But lists give some error message or
unexpected(?) results.)

5 Arrays work faster than lists.

6 numpy package supports the array.

Soon-Hyung Yook Chapter 2 March 31, 2017 34 / 52

Lists and Arrays Arrays

Arrays

Create one-dimensional array with n elements

All elements are initially equal to zero.

from numpy import zeros

a=zeros(4,float)

print(a)

Create two-dimensional array with n elements

All elements are initially equal to zero.

from numpy import zeros

a=zeros([3,4],float)

print(a)

Note that the first arguments of zeros in this case is itself a list.
similar function with zeros: ones

Soon-Hyung Yook Chapter 2 March 31, 2017 35 / 52

Lists and Arrays Arrays

Arrays

Create one-dimensional empty array with n elements

from numpy import empty

a=empty(4,float)

print(a)

Faster than zeros or ones.

Covert list into array

from numpy import array

r=[1.0,1.5,-2.2]

a=array(r,float)

print(a)

or

from numpy import array

a=array([1.0,1.5,-2.2],float)

print(a)

Soon-Hyung Yook Chapter 2 March 31, 2017 36 / 52

Lists and Arrays Arrays

Arrays

Covert list of list into 2−D array

from numpy import array

a=array([[1,2,3],[4,5,6]],float)

print(a)

Index of 2−D array

from numpy import zeros

a=zeros([2,2],float)

a[0,1]=1

a[1,0]=-1

print(a)

Soon-Hyung Yook Chapter 2 March 31, 2017 37 / 52

Lists and Arrays Reading an Array from a File

Reading an Array from a File

Use loadtxt function from the numpy package.

loadtxt

for any dimension of data!

from numpy import loadtxt

a=loadtxt("values.txt",float)

print(a)

Soon-Hyung Yook Chapter 2 March 31, 2017 38 / 52

Lists and Arrays Arithmetic with Arrays

Arithmetic with Arrays

As with lists, the individual elements of the list (array) behave like ordinary
variables.

One can do arithmetic with entire arrays at once!

Simple example

from numpy import array

a=array([1,2,3,4],int)

b=2*a

print(b)

c=a+b

print(c)

print(a+1)

print(a*b) # not a dot product!

print(dot(a,b))

Matrix multiplication (and multiplication of column vector to a matrix) can be
obtained by the dot function (see the example in the book).

Soon-Hyung Yook Chapter 2 March 31, 2017 39 / 52

Lists and Arrays Arithmetic with Arrays

Functions for Arrays

Built-in functions sum, max, min, len, map can be applied to array as
well.

Simple example

b=array(list(map(sqrt,a)),float)

size, shape methods

a=array([[1,2,3],[4,5,6]], int)

print(a.size)

print(a.shape) # the results is tuple

See also the examples in the book.

Soon-Hyung Yook Chapter 2 March 31, 2017 40 / 52

Lists and Arrays Arithmetic with Arrays

Warning for Arrays

For array, if we use b=a, then the python does not make a new array n.

The direct assignment of array a to new variable b results that the b also
refer the same array of numbers with a, stored somewhere in the memory.

Simple example

from numpy import array

a=array([1,1],int)

b=a

a[0]=2

print(a)

print(b)

Soon-Hyung Yook Chapter 2 March 31, 2017 41 / 52

Lists and Arrays Arithmetic with Arrays

Warning for Arrays

copy function

To make a copy of array a use copy function

from numpy import copy,array

a=array([1,1],int)

b=copy(a)

a[0]=2

print(a)

print(b)

Soon-Hyung Yook Chapter 2 March 31, 2017 42 / 52

Lists and Arrays Slicing

Slicing I

Slicing for lists

Slicing works with both arrays and lists.

Let r is a list.

Then r[m:n] is another list composed of a subset of the elements of r.

Starting with m and going up to but not including element n.

r=[1,3,5,7.9,11,13,15]

s=r[2:5]

print(s)

Slicing: variants

r[2:]: all elements of the list from elements 2 up to the end of the list.

r[:5]: all elements from the start of the list up to, but not including,
element 5.

r[:]: entire list.

Soon-Hyung Yook Chapter 2 March 31, 2017 43 / 52

Lists and Arrays Slicing

Slicing II

Slicing for arrays

from numpy import array

a=array([2,4,6,8,10,12,14,16],int)

b=a[3:6]

print(b)

also a[3:], a[:7], a[:] work for the array.

Slicing for two-dimensional arrays

a[2,3:6]: one-dimensional array with three elements equals to a[2,3], a[2,4], a[2,5].

a[2:4,3:6]: two dimensional array of size 2× 3 with values drawn from the appropriate
subblock of a, starting at a[2,3].

a[2,:]: the whole of row 2 of array a.

a[:,3]: the whole of column 3 of array a.

Soon-Hyung Yook Chapter 2 March 31, 2017 44 / 52

Lists and Arrays Slicing

for loops I

for loops

r=[1,3,5,7.9,11,13,15]

for n in r:

print(n)

print(n*2)

print("Finished")

range function

range(5): generate a list [0,1,2,3,4]

range(2,8): generate a list [2,3,4,5,6,7]

range(2,20,3): generate a list [2,5,8,11,14,17]

range(20,2,-3): generate a list [20,17,14,11,8,5]

Arguments of range should be integers.

Soon-Hyung Yook Chapter 2 March 31, 2017 45 / 52

Lists and Arrays Slicing

for loops II

for loop with function range

for n in range(5):

print(n**2)

for n in range(1,11):

print(2**n)

arange function from numpy package

arange(1,8,2): generate an array [1,3,5,7]

arange(1.0,8.0.2.0): generate an array [1.0,3.0,5.0,7.0]

arange(2.0,2.8,0.2): generate an array [2.0,2.2,2.4,2.6]

arange function can be also used with for loops.

Soon-Hyung Yook Chapter 2 March 31, 2017 46 / 52

Lists and Arrays Slicing

for loops III

linspace function from numpy package

linspace(2.0,8.0,5): divides the interval from 2.0 to 2.8 into 5 values,
creating an array [2.0,2.2,2.4,2.6,2.8]

linspace(2.0,2.8,3): generate a list [2.0,2.4,2.8]

linspace includes the last point in the range.

linspace function can be also used with for loops.

See the Examples in the textbook.
For loops and the sum function give us two different ways to compute sums of
quantities.
For loops are in general more flexible and faster than the array operation.

Soon-Hyung Yook Chapter 2 March 31, 2017 47 / 52

User-Defined Function

User-Defined Function I

Simple Structure

def function_name(argument1, ...):

do something

return x

Example: Factorial

def factorial(n):

f=1.0

for k in range(1,n+1):

f*=k

return k

a=factorial(10)

Soon-Hyung Yook Chapter 2 March 31, 2017 48 / 52

User-Defined Function

User-Defined Function II

Local variables

In the above example, f,k are local variables.
But if some variables are defined outside the function, those variables can be
referred in the function.⇒ Solution: Use the different files.

Function can return a List

from math import cos, sin, pi

def cartesian(r,theta):

x=r*cos(theta)

y=r*sin(theta)

position=[x,y]

return position # or equivalently return [x,y]

position_1=cartesian(10.2,pi/4.0)

Soon-Hyung Yook Chapter 2 March 31, 2017 49 / 52

User-Defined Function

User-Defined Function III

Function can return an Array

from math import cos, sin, pi

from numpy import arrray

def cartesian(r,theta):

x=r*cos(theta)

y=r*sin(theta)

return array([x,y],float)

position=cartesian(10.2,pi/4.0)

Soon-Hyung Yook Chapter 2 March 31, 2017 50 / 52

User-Defined Function

User-Defined Function IV

Function can return two values

from math import cos, sin, pi

from numpy import arrray

def cartesian(r,theta):

x=r*cos(theta)

y=r*sin(theta)

return x,y

rx,ry=cartesian(10.2,pi/4.0)

User-Defined Function with map

def f(x):

return 2*x-1

newlist=list(map(f,oldlist))

Soon-Hyung Yook Chapter 2 March 31, 2017 51 / 52

User-Defined Function

User-Defined Function V

User-Defined Function in a Different File

from mydefinitions import myfunction

See the examples and exercises:
Read also the rest of the chapter for good programming style.

Soon-Hyung Yook Chapter 2 March 31, 2017 52 / 52

	Getting Started
	Basic Programming
	Variables and Assignments
	Variable Types
	Output and Input Statements
	Arithmetic
	Functions, Packages, and Modules
	Built-in Functions
	Comment Statements

	Controlling Programs with ``if'' and ``while''
	The ``if'' statement
	The ``while'' statement
	Break and Continue

	Lists and Arrays
	Lists
	Arrays
	Reading an Array from a File
	Arithmetic with Arrays
	Slicing

	User-Defined Function

