Data Analysis-I Interpolation

Soon-Hyung Yook

December 4, 2015

 299

メロメ メタメ メモメ メモメ

Table of Contents

B × 299

メロトメ 御下 メミトメ

Interplation

Estimate the value between data

- Polynomial interpolation
	- for a set of data $\{(x_i, y_i)\}\$
		- no knowledge of the relationship between y and x
		- **e** e.g.: estimate $(x_{i+\delta}, y_{i+\delta})$ from the given dataset.
	- Weierstrass theorem: In general a continuous function $f(x)$ in a finite interval $x \in [a, b]$ can be fitted by a polynomial $P(x)$.
	- Find a polynomial approximation for $f(x)$ from N pairs of numbers $\{(x_i, f(x_i))\}$, for $i = 0, 1, \cdots, N - 1.$

イロト イ押ト イヨト イヨト

つくい

Lagrange Interpolation

Construct a polynomial of the form

$$
P(x) = \sum_{k=0}^{N-1} p_k(x) f(x_k)
$$
 (1)

Lagrange Polynomial

$$
p_k(x) = \frac{(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_{N-1})}{(x_k-x_0)(x_k-x_1)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_{N-1})}
$$
(2)

If we use the Lagrange polynomial then it is clear that

$$
P(x_i) = f(x_i) \tag{3}
$$

K ロ ト K 何 ト K ヨ ト K

 QQ

- • spline (in dictionary): a piece of "flexible" wood or plastic that can be bent into arbitrary smooth shapes
	- in the days before computers, it was used to trace a smooth curve between points on a sheet of graph paper.
- Idea: use a simple function to approximate the relation between the dependent and independent variables
	- use the third-degree polynomial :"cubic"-spline

$$
f(x) = a + bx + cx^{2} + dx^{3}
$$
 (4)

イロト イ押ト イヨト イヨト

- **•** To find the coefficients in each interval
	- use the condition for the continuity across each boundary

 Ω

continuity condition:

 $f_i^{(n)}(x_i) = f_{i+1}^{(n)}(x_{i+1})$ for $n\mathsf{th}$ derivative

重

 290

イロト イ部ト イミトメ

Conditions for cubic spline

Given a dataset $\{(x_i, y_i)\}$ in the interval $[a, b]$ $(a = x_0 < x_1 < \cdots < x_n = b),$ a cubic spline interpolant, f, for $\{y_i\}$ is a function that satisfies the following condition:

(a) f is a cubic polynomial, denoted by f_i , on the subinterval $[x_i, x_{i+1}]$.

(b)
$$
f(x_i) = y_i
$$
 for each *i*.

(c)
$$
f_{i+1}(x_{i+1}) = f_i(x_{i+1})
$$
 for each *i*.

(d)
$$
f'_{i+1}(x_{i+1}) = f'_{i}(x_{i+1})
$$
 for each *i*.

(e)
$$
f''_{i+1}(x_{i+1}) = f''_i(x_{i+1})
$$
 for each *i*.

(f) One of the following sets of boundary condition is frequently used:

(i)
$$
f''(x_0) = f''(x_n)
$$
 for natural or free boundary

(ii)
$$
f'(x_0) = y'(x_0)
$$
 and $f'(x_n) = y'(x_n)$ for clamped boundary

Other boundary conditions are also possible.

 Ω

イロメ イ母メ イヨメ イヨ

 \bullet To construct the cubic-spline interpolant for a ginven set of data $\{y_i\}$, we assume a third-order polynomial

$$
f_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3
$$
\n(5)

for all i .

• from condition (b) and Eq. (5) :

$$
f_i(x_i) = a_i = y_i \tag{6}
$$

• from condition (c): $a_{i+1} = f_{i+1}(x_{i+1}) = f_i(x_{i+1}).$ • and if we let $h_i \equiv x_{i+1} - x_i$ then we obtain

$$
a_{i+1} = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3
$$
 (7)

• From Eq. (5)

$$
b_i = f_i'(x_i) \tag{8}
$$

イロン イ母ン イヨン イヨン

 Ω

From condition (d) and $f_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2$:

$$
b_{i+1} = b_i + 2c_i h_i + 3d_i h_i^2
$$
 (9)

• From condition (e):

$$
c_i = f''(x_i)/2 \tag{10}
$$

and

$$
c_{i+1} = c_i + 3d_j h_j \tag{11}
$$

メロトメ 伊 トメ きょくき

In

 299

Solving for d_i in Eq. (11) and substituting d_i into Eq. (7) and Eq. (9)

$$
a_{i+i} = a_i + b_i h_i + \frac{h_i^3}{3} (2c_i + c_{j+1})
$$
\n(12)

and

$$
b_{i+i} = b_i + h_i(c_i + c_{i+1})
$$
\n(13)

- Note: Eq. [\(8\)](#page-7-3) and Eq. [\(10\)](#page-8-3) do not give us any numerical information to determine ${b_i}$ and ${c_i}$.
- We cannot determine $\{b_i\}$ and $\{c_i\}$ from Eq. [\(8\)](#page-7-3) and Eq. [\(10\)](#page-8-3).
- Therefore, we have to do more things!

 200

 $A \sqcup B$ $A \sqcap B$ $A \sqcap B$ $A \sqcap B$ A

The final relationship between the coefficients is obtained by first solving the appropriate equation in the form of Eq. (12) for b_i . From Eq. (12)

$$
b_i = \frac{1}{h}(a_{i+1} - a_i) - \frac{h_i}{3}(2c_i + c_{i+1})
$$
\n(14)

and then, with reduction of the index $(i \rightarrow i - 1)$:

$$
b_{i-1} = \frac{1}{h}(a_i - a_{i-1}) - \frac{h_{i-1}}{3}(2c_{i-1} + c_i)
$$
 (15)

Substituting Eq. [\(14\)](#page-10-1) and Eq. [\(15\)](#page-10-2) into Eq. [\(13\)](#page-9-2), when the index is reduced by 1 $(i \rightarrow i - 1)$, we obtain the linear system of equations:

$$
h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_ic_{i+1} = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}), \quad (16)
$$

for each $i = 1, 2, \cdots, n - 1$.

 QQ

イロト イ押 トイヨ トイヨ トーヨ

- • In Eq. [\(16\)](#page-10-3), only $\{c_i\}$ is a set of unknown parameters.
- In Eq. [\(16\)](#page-10-3), $\{h_i\}$ and $\{a_i\}$ are given by the spacing between each data point and the value of $\{y_i\}$.
- \bullet Once the values of $\{c_i\}$ is obtained, we can easily find $\{b_i\}$ from Eq. [\(14\)](#page-10-1).
- Then we can obtain $\{d_i\}$ from Eq. [\(11\)](#page-8-1).
- Eq. [\(16\)](#page-10-3) is an *n*-coupled linear equation.
	- \bullet solve Eq. [\(16\)](#page-10-3) using matrix.

 QQ

イロン イ母ン イヨン イヨン