Roots of an equation
How to use your computer to find roots?

Soon-Hyung Yook

April 19, 2016
Table of Contents

1 Bisection Method
 • Visualization

2 Newton-Raphson Method

3 Secant Method
Bisection Method

- The simplest and the most intuitive method.
- Find roots of equation $f(x) = 0$.
- Assume that we know the root x_r is in the interval $[a, b]$.

![Bisection Method Diagram]

Algorithm

1. set $x_0 = \frac{a+b}{2}$
2. If $f(a)f(x_0) < 0$ then let $b = x_0$
3. else set $a = x_0$.
4. repeat 1-3 until $|a - b| \leq \delta$.

δ is a tolerance.

Example

Let $f(x) = e^x \ln x - x^2$ and find the root of an equation $f(x) = 0$. Hint:

$x = 1 \rightarrow f(1) = -1$ and $x = 2 \rightarrow f(2) = 2$ so let $a = 1$ and $b = 2$.
Design for Visualization

\[f(x) = \sin x + \ldots \]

results: \(x = 0.76423 \)
Find the solution of the equation

\[f(x) = x^5 - 3x^4 - 5x^3 + x^2 + x + 3 = 0 \]

in the interval \(x \in [-2, 4] \) using bisection method.
Newton-Raphson Method

Assume a smooth function around its root.

\[f(x_r) = 0, \quad x_r = \text{root} \]

Use Taylor expansion around \(x_r \).

\[
 f(x) = f(x_r) + (x_r - x)f'(x_r) + \cdots = 0 \tag{1}
\]

Idea: Let \(x_k \) be a trial value for the root of \(f(x) = 0 \) (i.e., \(x_r \)) at \(k \)-th step and approximate \(x_r \) at \((k + 1)\)-th step based on \(x_k \).

From Eq. (1)

\[
 f(x_{k+1}) \simeq f(x_k) + (x_{k+1} - x_k)f'(x_k) \simeq 0 \tag{2}
\]

\[
 x_{k+1} = x_k - \frac{f_k}{f'_k} = x_k + \Delta x_k \tag{3}
\]

Here \(f_k = f(x_k) \) and \(\Delta x_k \) is a kind of a correction.
Newton-Raphson Method

Iteration:

\[x_{k+1} = x_k - \frac{f_k}{f'_k} = x_k + \Delta x_k \]

\[\Delta x = -\frac{f(x_k)}{f'(x_k)} \]

- \(f'(x) > 0, \ f(x) > 0 \)
- \(f'(x) > 0, \ f(x) < 0 \)
Find the solution of the equation

\[f(x) = x^5 - 3x^4 - 5x^3 + x^2 + x + 3 = 0 \]

in the interval \(x \in [-2, 4] \) using Newton-Raphson method.
Secant Method

- More generalized version of Newton-Raphson method.
- **Important:** This will be also used in shooting method to find a solution of differential equation with given boundary condition.
- If $f(x)$ has an implicit dependence on x.
 - Or if $f(x)$ is give by the numerical data (numbers).
 - Thus it is difficult to find out the derivative, $f'(x)$.

⇒ use the two points definition of $f'(x)$

From Eq. (3)

$$x_{k+1} \approx x_k - (x_k - x_{k-1}) \frac{f_k}{f_k - f_{k-1}} = x_i + \Delta x_i$$
Find the solution of the equation

\[f(x) = x^5 - 3x^4 - 5x^3 + x^2 + x + 3 = 0 \]

in the interval \(x \in [-2, 4] \) using secant method.