
The good news is that at the desktop and
server levels, practical SMP (shared mem-
ory parallel) software-engineering tech-
niques are now available, and increasing
numbers of ISVs are taking advantage of
them via principles one and two. However,
to exploit larger systems, the two don’ts
must be mitigated before scalable paral-
lelism is practically useful. Today, to reach
very-high performance goals, it is often
necessary to develop from scratch, focus on
low communication, and drop any func-
tionality that blocks scalability.

The main reason for building DMP 
(distributed memory parallel) or NUMA
(nonuniform memory access) SMP systems
is that the physics of current technology,
over time, has prevented arbitrarily large
SMP system construction. Barring major
changes in computer technology, some-
thing beyond uniform memory SMP sys-
tems will be needed indefinitely, and so we
must address the two don’ts.

What can we learn from the dos that
might suggest solutions for the don’ts? Both
dos are related to progress in directive-based
parallel programming over the past 20 years,
culminating in the past year with the new
OpenMP programming model and direc-
tives for Fortran, C, and C++. A powerful
SMP programming model and effective par-
allel software engineering tools are now
available, making hand-threaded assembly-
language-level thinking and programming
unnecessary for SMP developers. Proof of
this claim comes from the increasing num-
ber of ISVs adopting OpenMP.

NUMA systems (SMP with widely vary-
ing main-memory access times) and clus-
tered SMP systems (message passing be-
tween SMP nodes) currently address the
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PARALLELISM AND CSE
David J. Kuck

TRENDS IN MANY AREAS OF COMPUTATION ARE MOVING TO-

WARD MULTIFUNCTIONAL APPLICATIONS. IN SCIENCE AND

ENGINEERING, FOR EXAMPLE, THIS MIGHT TAKE THE FORM OF

MULTI PHYSICS APPLICATIONS, WHEREBY FUNCTIONALITIES (SUCH

as structures and fluids applications) integrate into a single new application. It might
also take the form of a computational chemistry application that embeds a spread-
sheet format and allows users to specify a set of runs via a high-level graphical user
interface. Even in nontechnical areas, combining applications is the order of the
day—witness databases embedded in enterprise and Internet applications. 

Developing multifunctional applications requires reusing existing applications.
This has led many forward-looking independent software vendors (ISVs) to team
up to produce joint products. The products that result provide users with more
benefits but at the cost of requiring more capable computer systems.

Continuing system performance improvement is necessary in areas ranging
from CSE to ERP (enterprise resource planning), and parallelism can provide the
increasing speed and memory sizes needed. Parallelism in computing is as old as
the first two decades of electronic computers, and it is as new as four-processor
parallel workstations or 4,000-processor massively parallel supercomputers. Most
ISVs are now motivated to develop parallel applications, but new efforts are of-
ten haunted by the broken schedules and superlinear resource demands of many
past parallelism projects. 

While the Department of Energy’s ASCI project, for example, can still afford
to put multiyear efforts into new application development, most development
projects cannot. Most of the software used today, even in large enterprises, is pro-
duced by ISVs—not users or enterprises. Because the 20,000-odd ISVs are mostly
small, discipline-focused companies, practical approaches to parallel software de-
velopment are crucial.

A few simple principles must be followed today to develop successful parallel
applications:

1. do use parallel software engineering technology with maximum power,
2. do evolve sequential applications toward parallelism to preserve sequential

functionality, 
3. don’t use hardware with insufficient bandwidths or excessive latencies for cho-

sen applications, and
4. don’t include desired functionality that requires high communication if it

blocks scalability.
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long-term requirements for arbitrarily scal-
able parallelism. Because SMP programming
is basic to both architectures, can the SMP
programming dos be naturally extended to
mitigate principle four in some way?

Today, message passing for DMP systems
is difficult, but it is the most successful DMP
technique. High-performance Fortran has
not lived up to its promise—mostly due to
difficulties with irregular data and program
dynamics. Presumably it might have been
more successful if it had made programming
less labor-intensive. However, success with
message passing comes from serious think-
ing about domain decomposition and the as-
sembly-language-level expression of ideas—
both very labor-intensive activities. In other
words, the issue is not really programming
languages or even human effort—it is the
underlying mismatches between algorithms
and DMP architectures that trap unwary
users and foil performance.

When an application needs more paral-
lelism than current SMP systems provide,
the parallelism might have arisen for one of
three reasons:

• the natural parallelism used in the SMP
system is simply greater than the system
can handle,

• nested parallelism exists (a second level
is found above the SMP level already in
use), or 

• multifunctional computations occur that
decompose at a very high level, with dis-
tinct functionalities  running on distinct
SMP systems. 

An approach to scalable parallelism in
these cases is to iteratively refine applications
through SMP-style programming. First, you
develop the best SMP applications possible
and then study their structure and perfor-
mance, locating ideal points for decompos-
ing them into NUMA/cluster parallelism
and introducing messaging or nested paral-
lelism directives at these crucial points. Note
that finding and expressing such parallelism

(which OpenMP allows with directives) is
only half the problem. The remaining issue
is having a system that executes the program
for each data set in a low-communication,
load-balanced manner.

This requires new tools and extends the
dos above. It does not allow for weak sys-
tems, of course—increasingly fast memory
systems must remove principle three. Sup-
posing that hardware advances and user
awareness do control number three, the goal
of mitigating number four might be reached
by new software research that extends the
directive-based programming model while
preserving sequential functionality.

After some 30 years of increasingly in-
tense R&D, we now have effective SMP
software-engineering methods. We can ex-
pect continuing progress toward scalable
practical parallelism that will make most
parallelism relatively easy to deal with.
However, there might always be some ap-
plications that yield only to totally original
thinking and message passing for high-level
decomposition. These open questions for
the future naturally lead us to CSE’s educa-
tion and research agenda.

A number of university CSE programs
exist today, but with great diversity. Some
are looking for ways to focus and integrate
themselves in the larger CSE community.
One way of accelerating progress would be
for them to share software and educational
tools. Specifically, they could use a common
software base to focus on improving real ap-
plications relative to realism, multifunc-
tionality, performance, numerical quality,
and usability. Effective study and develop-
ment could be carried out by students in
various departments—from the viewpoints
of science and engineering models, compil-
ers, performance tuning, numerical meth-
ods, GUIs, and so forth. The architectural
focus would range from parallel worksta-
tions to distributed supercomputing. 

A lasting contribution to performance

improvement would be in parallelization.
Source code containing OpenMP directives
for SMP parallelism could be provided that
meet the dos above, and would provide an
easy learning experience for new graduate
students relative to the application’s func-
tionality and its improvement potential.
This effort would begin in fields having
workhorse public-domain codes and then
spread to partially revealed source code for
ISV applications.  Software ISVs could pro-
vide powerful tools. (For information about
university courses and applications areas al-
ready moving in this direction, visit
www.kai.com/kpts/applications.) This would
lead to a cross-university fabric of applica-
tions, tools, and development activities in
areas with widely used public-domain codes.

The benefits would include the develop-
ment of better application software, algo-
rithms, parallel software engineering tools,
and performance information. MS theses of
all kinds would quickly arise, and eventually
PhD students would write theses in these ar-
eas. This might even lead to consensus grand-
challenge questions that the community
could work on jointly, replacing after-the-fact
attempts to claim grand-challenge status for
any high-performance project. Eventually,
this would benefit the entire CSE educational
community as well as CSE as a field. 
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These essays

Editors-in-Chief George Cybenko and Lewis Holmes have asked a number of
leading scientists and engineers to comment on the effect computation is
having on their work. These essays will appear in this and subsequent issues
of Computing in Science & Engineering. — Eds.
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Because an MD simulation produces a
complete trajectory history, it can measure
any conceivable property. These include
thermodynamic features such as the equa-
tion of state (temperature is proportional to
kinetic energy and pressure follows from
the virial), dynamical properties such as vis-
cosity, elastic constants, and structural char-
acteristics of which the radial distribution
function is the simplest. Measurements
such as these all correspond directly with
what we can obtain in the laboratory, using,
for example, calorimetry or X-ray scatter-
ing. Other measurements have no labora-
tory counterparts but can nevertheless be
used to study the underlying behavior in
greater detail; examples include three-body
correlations and trajectory properties. 

Computational efficiency is important be-
cause interesting problems tend to push the
envelope in terms of system size and/or the
number of integration timesteps. While the
number of particle pairs is proportional to
N2, the force computation can be reduced to
order N—in the case of short-range forces—
thanks to suitable bookkeeping techniques.
This is based on the fact that each particle in-
teracts with others in a small neighborhood.
Alternative techniques have been developed
for long-range forces based on Ewald sum-
mation and cell-multipole methods. 

Despite these efforts, MD is limited in
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MOLECULAR DYNAMICS SIMULATION
D.C. Rapaport

T HE PROPERTIES OF MATTER ARE DETERMINED BY THE

COLLECTIVE BEHAVIOR OF THE COMPONENT ATOMS.

THEORY—IN SOME CASES, WORK SPANNING WELL OVER A CEN-

TURY—HAS TAUGHT US A GREAT DEAL IN FIELDS SUCH AS MATER-

ial science, polymers, fluids, and surfaces. But there are often serious simplifica-
tions involved, such as replacing the discrete atoms with a continuous medium.
More detailed exploration at the atomistic level requires solving various incarna-
tions of the N-body problem, a task we can only perform numerically. Such tech-
niques, in which the particles are classical (that is, nonquantum) representations
of the atoms or molecules, are known as molecular dynamics (MD) simulation.

MD requires a description of the molecules and the forces that act between
them; a well-known example is the Lennard-Jones potential, in which spherical
particles repel one another at close range but otherwise attract. The MD simula-
tion itself amounts to numerically integrating the equations of motion for systems
of between a few hundred and a few million particles over many thousand (or
more) timesteps. The paths the particles follow during the computation repre-
sent actual molecular trajectories.

A variety of issues must be addressed when developing an MD simulation. The
integration technique used, such as the leapfrog method, must provide an accu-
rate solution; an important accuracy test is the ability to conserve energy in a me-
chanically isolated system. The particles are typically confined to a box-shaped
region; periodic boundaries—which treat the box as just one member of a spa-
tially repeating array—effectively confine the particles without the perturbing ef-
fects of real hard walls.  The initial state must be specified. Property measure-
ments must be implemented, and their accuracy and statistical reliability ensured
as in experiment. An isolated system will normally reach an equilibrium state, per-
haps resembling a crystalline or amorphous solid, or a liquid; adequate time must
be allowed to reach this state before making any measurements.

Molecules more complex than simple spherical particles are readily modeled.
Multiple interaction sites can represent rigid molecules of various kinds. Flexible
molecules, both short oligomer and long polymer chains, can be constructed by
permanently linking particles with suitable springs. To simulate complex biopoly-
mers such as proteins, molecules with a partially rigid skeleton (to eliminate fast
internal vibrations that would lead to stiff equations) can be built with geometric
constraints. The interactions themselves need not be based on simple pair po-
tentials; we can incorporate orientational dependence and three-body effects.
Weak quantum effects can be expressed in terms of corrections to measured prop-
erties, if needed. A combination of MD and density functional methods provides
the means for modeling semiconductors and liquid metals when we have to take
the valence electron behavior into account. MD is not limited to equilibrium stud-
ies; because it is capable of handling open systems, such as a fluid mechanically
sheared by a sliding wall, it can address problems beyond the capabilities of cur-
rent theory. It can also explore environments unobtainable experimentally, such
as extreme pressure conditions.

.
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what it can achieve: an effect whose de-
scription embraces a wide range of time-
scales, such as protein folding or glass for-
mation, remains a computational challenge.
Ideally (and this is a subject of some inter-
est), one would like to merge various com-
putational approaches, so that different
parts of the system are represented at vary-
ing levels of detail. In this way, the compu-
tational effort could be better focused.

MD is the most general of the atomistic
simulation techniques available. Among the
alternatives, Monte Carlo is based on sta-
tistical sampling and used in equilibrium
studies, while lattice-based models such as
cellular automata are very limited in their
descriptive powers. MD’s richness also has
a negative side, because the wealth of detail
implies heavy computation; fortunately, in-
creasing processor power alleviates this
problem’s severity to some extent. MD has
been implemented on a variety of advanced
computer architectures, including vector
and parallel supercomputers, and even spe-
cial-purpose machines. Large-scale paral-
lelism is beneficial only within limits, how-
ever, because a certain minimal number of
particles per processing node are needed;
this implies that massive parallelism is un-
likely to provide a complete solution to the
timescale problem.

MD applications are ubiquitous. Work
on complex fluids includes molecular liquids
of many kinds, the structure and dynamics
of glasses, water and ionic solutions, liquid
crystals, and thin films. Studies of solids in-
clude molecular crystals, structural trans-
formations, fracture, radiation damage, me-
chanical properties, friction, shock waves,
and epitaxial growth. Biochemical simula-
tions include protein dynamics and the
docking processes between molecules im-
portant in drug design. Other more funda-
mental uses aim to test theory. MD method-
ology is also crucial for modeling granular
flow, where the particles correspond to
grains and the interactions include a dissi-
pative component.

Visualization plays an important role in
situations where the behavior is complex
and time dependent. It might well be the
static or animated visual imagery derived
from the results of an MD simulation that
best summarizes system behavior. Two fig-
ures from my current work illustrate this
point. 

Figure 1 demonstrates the use of MD in
hydrodynamic instability studies—in this case,
the convection patterns that form when a thin
fluid layer is heated from below (the Rayleigh-
Bénard problem). The figure shows a top-
down view of a 3D system containing four
million particles, with color distinguishing hot
fluid upflow from cold downflow. The forma-
tion of a set of thermal convection cells is
clearly apparent. The surprise is that the same
familiar self-organized flow occurring in
macroscopic fluids should also appear in this
microscopically small system whose layer
thickness is a mere 100 Å. 

Figure 2 is from a study of supramolecu-
lar self-assembly in which simple structural
elements combine spontaneously to form
closed polyhedra reminiscent of the icosa-
hedral protein shells that appear in many
viruses. The robustness of this process in
nature suggests that a simplified model
based on rigid bodies with suitable interac-
tions might be used in simulating assembly. 

What does the future hold? MD sim-
ulation covers length scales rang-

ing from the atomistic to entire microstruc-
tures. It has proved capable of studying a
broad range of phenomena associated with
both simple and complex molecules. It is
free of many of the simplifying assumptions
that tend to dominate theory and other
modeling techniques. So, after making the
reasonable extrapolation that computer
power will continue to grow at its present
rate, I have little doubt that MD is destined
to play an ever-increasing role in both sci-
ence and engineering. 

D.C. Rapaport is a professor in the Physics De-

partment at Bar-Ilan University, Israel.  Rapa-
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Figure 1. 3D convection patterns (top-
down view).

Figure 2. Growth of 60-faced polyhedra
using an MD approach.
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random-walk approach.7 But these theories
haven’t been able to satisfactorily explain
phenomena, such as size segregation or
density fluctuations, that are part of many
of the effects we mentioned previously.
This is because incorporating static friction,
local rotations, and other relevant micro-
scopic mechanisms into these theories is
very difficult.

Therefore, to better understand the rhe-
ological effects of granular media, computer
simulations are very important.8 For over a
decade, researchers have used discrete-ele-
ment methods that, instead of treating the
granular material as a continuum, treat it as
an assemblage of particles interacting
through their contacts. Peter Cundall intro-
duced this technique to study the motion of
rock masses.9 Since then it has been applied
to statistical micromechanics, constitutive
behavior of granular soils, creep of soils,
analysis of rock-support interaction, and
other applications of soil mechanics. This
technique has also been applied to model-
size segregation, outflow from a hopper,
shear flow, and flow down an inclined chute.

The discrete-element methods described
above are very similar to what physicists
have been calling, for decades, molecular dy-
namics.10 In the case of frictional hard-core
interactions that we encounter in granular
matter, different variants of molecular dy-
namics are used, depending on the applica-
tion. If the particles move rapidly, collisions
are considered instantaneous (with infinite
forces), and a lookup table for the velocities
can describe a collision’s outcome. These
techniques are called event-driven and are
particularly fast on workstations (but diffi-
cult to parallelize). Figure 1 shows the ap-
plication of event-driven techniques to il-
lustrate the surface waves that occur when
a shallow bed of grains vibrates vertically.
The picture, which was generated by Ste-
fan Luding,11 was produced in 2D with
fixed walls. (Similar simulations in 3D were
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THE IMPORTANCE OF COMPUTER
SIMULATIONS OF GRANULAR FLOW
Hans J. Herrmann

GRANULAR MATERIALS ARE VERY COMMON IN OUR DAILY

LIFE BUT ALSO IMPORTANT FOR TECHNOLOGICAL APPLI-

CATIONS AND IN GEOPHYSICS. UNTIL THE LAST CENTURY, THEY

HAD BEEN STUDIED BY SUCH PHYSICISTS AS MICHAEL FARADAY, 

James Maxwell, and Osborne Reynolds. However, because of the difficulties in
formulating a continuum theory for their deformation, they were abandoned by
physicists for many decades and only rediscovered about 10 years ago. In the
meantime (that is, since the 1950s), two engineering communities (soil mechan-
ics and chemical engineering) succeeded in formulating continuum equations of
motion that work rather well in the dense1 and dilute2 limits of granular systems.
But the foundation of these theories is, in view of modern statistical mechanics,
still quite open and has recently become a very active research field. Most im-
portant, these theories are not applicable in most of the realistic situations in
which the granular material changes its density spontaneously and in which dif-
ferent types of grains induce interesting segregation patterns.

Many rather astonishing phenomena occur when granular materials such as sand
or powders move.3 Examples are the “Brazil nut” segregation, heap formation un-
der vibration,4 density waves emitted from outlets, and 1/f noise in the power spec-
tra of local forces. All these effects originate in the ability of granular materials to
form a hybrid state between a fluid and a solid: When the material’s density exceeds
a certain value, the critical dilatancy,5 the material is resistant to shear, like solids,
while below this density it will “fluidify.” This fluidified state can be rather com-
plex, especially in the presence of density fluctuations and density gradients.

Particularly suited to study this fluidization is an experiment where sand is put
on a loudspeaker or on a vibrating table. Under gravity, the sand jumps up and
down; although kinetic energy is strongly dissipated, collisions among the grains
reduce the sand’s density, thereby allowing it to flow (fluidization). Under certain
circumstances, flow between the top and bottom can occur in the form of convec-
tion cells, as researchers have observed experimentally in the case of inhomo-
geneities in the vibration’s amplitude. More striking is that sand spontaneously can
form heaps, as Faraday first described in 1831.4 Within these heaps, convection oc-
curs that might even be the motor for the heap formation: Inside the heap the sand
rises, pops out at the top, and slides down on the surface. Usually these heaps have
complicated shapes that change in time, and sometimes you can also see ripples and
other regular structures on their surface. If you put particles of different sizes but
equal density on the vibrating plate, the larger particles tend to rise. After some time,
you’ll see a segregation into regions with larger particles and regions with smaller
particles. When the plate’s vibration also has a horizontal component, the material
will flow in one direction, a technique often used in powder transport.

Researchers have made various attempts to formalize and quantify the compli-
cated rheology of granular media. They’ve proposed continuum equations of mo-
tion and a kinetic theory,2 thermodynamic formulations, cellular automata,6 and

.
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Figure 1. Surface waves in a
2D vibrated box. Colors indi-
cate a particle’s kinetic energy
(blue = low, red = high).11

performed at the University of Texas,
Austin,12 also where Paul Umbanhowar,
Francisco Melo, and Harry Swinney con-
ducted their spectacular experiments on
surface waves,13 which triggered the simu-
lation of Figure 1 and other similar work.)
Another important application for event-
driven simulations is cluster formations in
intergalactic dust.

For dense systems and for certain appli-
cations, such as the propagation of sound in
granular packings, using elastic repulsion
potentials between the particles can avoid
infinite collisions in a finite time interval.
These soft-core molecular dynamics have
been applied successfully to describe the
clogging of silos and pipes, segregation ef-
fects under shear or under vibration, and
the pressure distribution below sand heaps.

Although the above methods have been
pushed to simulate more than 109 particles
during several microseconds’ real time, cur-
rent workstations can typically simulate only
approximately 104 particles, using one day of
CPU time to simulate realistic experimental
times. For many applications, in particular in
3D, this number is not large enough because
collective phenomena occur on very large
scales. Imagine a silo filled with wheat grains
that has a 10-cm-diameter outlet that clogs!

To simulate a much larger number of par-
ticles than with a discrete-element method,
new approaches have been proposed. One is
Discrete Simulation Monte Carlo, which treats
collision events stochastically. Instead of cal-
culating each particle’s trajectory and wait-
ing for the particles to collide, DSMC di-
vides the system into boxes, out of which it
randomly chooses collision partners. These
methods allow an increase of the number of
particles by a factor of 100.14

Other new algorithms similar to cellular
automata place the particles on a lattice,
simplifying the calculation of the coordi-
nates. Such methods have been very suc-
cessful in reproducing experimental details
such as the logarithmic tail at the bottom of
the sand heap.15

T he impor-
tance of the

technological ap-
plications of granular media in silos or con-
veyer belts, in ball mills or under bulldoz-
ers, demands more efficient simulation
techniques to reproduce entire industrial
processes. Although several commercial
programs for the simulation of granular
material exist, their use is not nearly as
common as in fluid or solid mechanics.
This is mainly due to historical reasons and
to limitations in the number of simulated
particles. The advancement of computer
hardware and the rapid advance in simula-
tion algorithms ensure that particle simula-
tions will become much more common-
place in power technology. Other areas will
certainly profit from this progress in com-
putational granular materials, such as geo-
sciences and astrophysics. One beautiful ex-
ample is the simulation of the transport of
particles under the action of wind, and the
subsequent formation of dunes.
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tivate me to focus mainly on the Boston
group’s results; the work of other research
groups is described elsewhere.

Economic time series: correlations
or the lack thereof
The recent availability of “high-frequency”
data lets us study economic time series on a
wide range of time scales varying from sec-
onds up to years. Consequently, researchers
have applied a large number of methods
known from statistical physics to charac-
terize the time evolution of stock prices and
foreign exchange rates.

Much of our recent work is based on
analysis of the S&P 500 index, an index of
the New York Stock Exchange (NYSE) that
consists of the 500 largest companies in the
US. It is a market-value weighted index
(stock price times the number of shares out-
standing), with each stock’s weight in the in-
dex proportionate to its market value.3–5 The
S&P 500 index is one of the most widely
used benchmarks of US equity performance.
Data typically cover a long period, such as 13
years (from January 1984 to December
1996), with a recording frequency of one
minute or shorter. The total number of data
points in this 13-year period exceeds one
million, three orders of magnitude greater
than Benoit Mandelbrot’s classic analysis of
cotton price fluctuations.6

The S&P 500 index Z(t) from 1984 to
1996 tends to drift constantly upward on a
semilog graph—except during crashes, such
as in October 1987 and May 1990. We an-
alyze the difference of the logarithm of the
index values G(t) ≡ loge Z(t + ∆t) − loge Z(t),
where ∆t is the time lag. We count only the
number of minutes during the stock mar-
ket’s opening hours and remove the nights,
weekends, and holidays from the data set.
That is, the market’s closing and next open-
ing is continuous.

The distributions of the increments of
economic time series, both in stock market
indices and foreign currency exchange rates,
turn out to be nearly symmetric and have
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ECONOPHYSICS: CAN PHYSICISTS
CONTRIBUTE TO THE SCIENCE OF
ECONOMICS?
H. Eugene Stanley

THE FUNDAMENTAL PRINCIPLES GOVERNING THE COMPLEX

SYSTEM CALLED ECONOMICS ARE NOT COMPLETELY

UNCOVERED. THIS OBSERVATION SEEMS TO BE ALMOST GENERALLY

ACCEPTED; FOR EXAMPLE, THE 23 AUGUST 1997 ISSUE OF  THE

ECONOMIST FEATURED THE COVER ARTICLE, “THE PUZZLING

FAILURE OF ECONOMICS.”

Then how can computational physicists contribute to the search for solutions
to the puzzles posed by modern economics that economists themselves cannot
solve? An approach—not very commonly used in economics—is to begin empir-
ically, with real data that you can analyze in some detail, but without prior mod-
els. In economics, a great deal of real data is available. If you, moreover, have at
your disposal the tools of computational physics and the computing power to carry
out any number of approaches, this abundance of data is a great advantage. Thus,
for physicists, studying the economy means studying a wealth of data on a well-
defined complex system. Indeed, physicists in increasing numbers are finding
problems posed by economics sufficiently challenging to engage their attention,
independent of any personal profit that might be made. Various terms have been
applied to this new interdisciplinary subfield of physics. Some French physicists
prefer the term phynance, while others prefer other terms. In an analogy with the
terms biophysics, geophysics, and astrophysics, in 1994 or 1995 I introduced the term
econophysics to attempt to legitimize why physics graduate students should be al-
lowed to work on problems originating in economics.

If we physicists have any prior bias, it might be the lesson learned years ago
when many of us worked on critical phenomena: Everything depends on every-
thing else. A careful analysis of any system involves studying the propagation of
correlations from one unit of the system to the next. We learned that these cor-
relations propagate both directly and indirectly. At one time, it was imagined that
“scale-free” phenomena are relevant to only a fairly narrow slice of physical phe-
nomena. However, the range of systems that apparently display power-law and
hence scale-invariant correlations has increased dramatically in recent years. Such
systems range from base-pair correlations in noncoding DNA, lung inflation, and
interbeat intervals of the human heart, to complex systems involving large num-
bers of interacting subunits that display “free will,” such as animal behavior1 and
even human behavior.2 In particular, economic time series—for example, stock
market indices or currency exchange rates—depend on the evolution of a large
number of strongly interacting systems far from equilibrium, and belong to the
class of complex evolving systems. Thus, the statistical properties of economic
time series have attracted the interests of many physicists. Space limitations mo-

.
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very fat tails (strong leptokurtic wings). In-
dex increments as a function of time show
exponentially decaying correlations that are
at noise level after a few minutes. This
makes these increments fundamentally dif-
ferent from many well-studied examples of
complex dynamical systems in physics. One
such example is turbulent flow, which com-
monly displays power-law correlations on
long time scales.7,8

The situation is different for the volatility,
which is calculated, for example, averaging
market fluctuations over a suitable time in-
terval. The volatility has long time persis-
tence—much larger than the correlation time
for price changes.4,5 Quantifying the volatil-
ity’s dynamics is important. Volatility is the
key input of virtually all option pricing mod-
els, including the classic Black and Scholes
model, which is based on estimates of the as-
set’s volatility over the option’s remaining life.

Specifically, using both traditional power-
spectrum methods as well as a new method—
detrended fluctuation analysis (DFA)9—Yanhui
Liu and his coworkers4,5 detect long-range
volatility correlations embedded in a nonsta-
tionary time series. This new method avoids
the spurious detection of apparent long-
range correlations that are an artifact of
nonstationarities.

Both methods show the existence of two
distinct regions of power-law behavior for
the autocorrelation function of volatility,
with the exponents α1 = 0.66 and α2 = 0.95
for t less than or greater than a characteris-
tic time scale t× on the order of one day. It
is as if the information used in a single day
to make trading decisions differs from the
long-term information used.

To test whether this correlation is a spu-
rious artifact of the distribution function,
which might have long tails, Liu and his
colleagues shuffle each point of the volatil-
ity time series. The random shuffling keeps
the volatility distribution unchanged but
totally kills any correlations in the time se-
ries. DFA analysis of this randomly shuffled
data does not show any correlations and

gives the exponent α = 0.50. This tells us
that the long-range correlations are due to
the economic system’s dynamics and not
simply due to the fat-tailed distribution, be-
cause the distribution does not change
when the data are shuffled.

Histograms of price changes
Although the correlations in the price change
G(t) are not particularly novel, the his-
tograms of price changes are. Because eco-
nomic systems consist of a large number of
interacting units, it is plausible that they
might be amenable to scaling analysis. Man-
delbrot in 1963 demonstrated that the his-
togram of fluctuations in cotton prices obeys
a scaling distribution, the Lévy distribution.6 A
recent study determined that the high-
frequency fluctuations in the S&P 500 index
also exhibit scaling behavior.3 Analyzing al-
most one million records at one-minute in-
tervals over six years of trading, Rosario  N.
Mantegna and I determined that fluctuations
on a one-minute time interval were reflected
in 10-minute, 100-minute, and 1,000-minute
intervals.3 The distribution of index returns
fits a Lévy distribution with a sharp drop-off
in the tails. These scaling properties mean
that viewing stock market returns at one-
minute intervals provides insight on the be-
havior at 1,000-minute intervals.

Thus, the Lévy part of the S&P 500 dis-
tribution agrees with Mandelbrot’s 1963
cotton-price results, but the tail truncation
does not (presumably because the tail statis-
tics in the low-frequency results are not
above the noise level). Recently, Para-
meswaran Gopikrishnan and his colleagues
asked whether this discrepancy could be be-
cause the S&P is an average over many
firms.10 To this end, they analyze a database
documenting every trade in the three major
US stock markets—the NYSE, the Ameri-
can Stock Exchange (AMEX), and the Na-
tional Association of Securities Dealers Au-
tomated Quotation (NASDAQ)—for the
entire two-year period of January 1994 to
December 1995. They thereby extract a

sample of approximately 40 million data
points, which is much larger than the one
million data points analyzed by Liu and his
colleagues4,5 and the approximately 1,000
data points studied by Mandelbrot. Gopikr-
ishnan and his colleagues find, remarkably,
an asymptotic power-law behavior, with an
exponent α ≈ 3 for the cumulative distribu-
tion (see Figure 1) that is well outside the
Lévy regime (0 < α < 2).10

In summary, previous proposals for the
histogram of index changes have included a
Gaussian distribution, a Lévy distribution,6

and a truncated Lévy distribution, where the
tails become “approximately exponential.”3

The inverse cubic result differs from all
three proposals. Unlike the Gaussian distri-
bution and the truncated Lévy distribution,
it has diverging higher moments, and unlike
the Gaussian distribution and the Lévy dis-
tribution, it is not a stable distribution.

Economic organizations
Economics is of course much broader than
just analyzing economic time series. Many
physicists imagine they can add new ideas
on how to analyze a time series, but what
about general questions in social science,
which concerns itself with the organization
of individuals—each with free will? Taking
the same “empirical” approach, the Boston
group has also studied a range of data on
economic organizations—viewing the data
through the special eyeglasses of critical
phenomena (imagining that “everything
depends on everything else”). Specifically,
in collaboration with a card-carrying econ-
omist, Michael A. Salinger, we studied the
possibility that all the companies in a given
economy might interact, more or less, like
an Edwards-Anderson spin glass.11 In that
spin glass, each spin interacts with every
other spin—but not with the same coupling
and not even with the same sign.

For example, a 10% decrease in the sales
of a given business firm will have repercus-
sions in the economy. Some of the reper-
cussions will be favorable—firm B, which

.
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competes with A, might experience an in-
crease in market share. Others will be neg-
ative—service industries that provide per-
sonal services for firm A employees might
experience a drop-off in sales because em-
ployee salaries will surely decline. Almost
any economic change has positive and neg-
ative correlations. Can we view the econ-
omy as a complicated spin glass?

To approach this interesting bit of statis-
tical “poetry” and make sense of it, Michael
H.R. Stanley and Michael A. Salinger first
located and secured a database—called
Compustat—that lists the annual size of
every US firm. With this information, they
and their colleagues calculated histograms
of how firm sizes change from one year to
the next.11 They then made 15 histograms
for each of 15 bins of firm sizes. The largest
firms have very narrow growth-rate distri-
butions—plausible because the percentage
of size change from year to year for the
largest firms cannot be that great. On the
other hand, a tiny firm or a garage-based
start-up can radically increase (or decrease)
in size from year to year. Thus, these 15
histograms have widths that depend on the
firm size. When this width is plotted on the
y-axis of log-log paper as a function of firm
size on the x-axis, the data are approxi-
mately linear over eight orders of magni-
tude, from the tiniest firms in the database
to the largest. The width scales with the
firm size to an exponent β, with β ≈ 1/6.11

We can therefore normalize the growth
rate and show that all the data collapse on a
single curve—demonstrating the scaling of
this measure of firm size.

Why does this data collapse occur? Re-
searchers are working on that. Sergey V.
Buldyrev models this firm structure as an
approximate Cayley tree, in which each
subunit of a firm reacts to its directives
from above with a certain probability dis-
tribution.12 More recently, Luis A.N. Ama-
ral and his colleagues have proposed a mi-
croscopic model that reproduces both the
exponent and the distribution function.13

Hideki Takayasu and Kenji Okuyama ex-
tended the empirical results to a wide range
of countries and developed still another
model.14

It is not impossible to imagine some very
general principles of complex organizations
are at work here, because similar empirical
laws appear to hold for data on a range of
systems that at first sight might not seem to
be so closely related. For example, instead
of studying the growth rate of firms, you
can study the growth rates of countries by
analyzing the ratio of a country’s GDP
(gross domestic product) in one year com-
pared to its value in the previous year. The
histograms of country GDP sizes appear to
behave the same way as the histograms of
firm sizes15 (see Figure 2), even with the
same exponent value β ≈ 1/6. Very recently,
Vasiliki Plerou and her colleagues analyzed
in the same way a database comprising re-
search budgets of 719 US universities and
found similar qualitative results, but a
slightly larger exponent value, β ≈ 1/4.

Instead of a firm’s size at time t (or the size
of a GDP or a university budget), you might
analyze the population Ns(t) of a species s in
successive years. Such data exist for a 30-year
period for every species sighted in North
America. Very recently, Timothy H. Keitt
and I have analyzed this database using the
same sort of techniques used to describe
long-term data sets on economics and fi-
nance.2 We find statistical properties that are
remarkably similar, and consistent with the
idea that “every bird species interacts with
every other bird species,” just as the eco-
nomic analysis supports the notion that
“every economic entity interacts with every
other economic entity.”

These empirical results are not without
interest, because they cast doubt on mod-
els of economic systems—and bird popu-
lations—that partition the entire data set
into strongly interacting and weakly inter-
acting subsets and then oversimplify or ig-
nore the interactions in the weakly inter-
acting subset.

What can we say so far, other than just
that apparently a number of natural

questions in economics can be investigated
quantitatively, using empirical analysis meth-
ods not unlike those used in the study of crit-
ical phenomena? And that the quantitative
behavior of these complex economic sys-
tems—comprising many animate subunits—
is not unlike that found in interacting sys-
tems comprising many inanimate subunits.
Can we understand why methods developed
in, say, critical phenomena to quantify sys-
tems comprising inanimate subunits should
apparently apply to complex systems com-
prising animate subunits? Indeed, the con-
ceptual framework of critical phenomena is
increasingly finding application in other
fields, ranging from chemistry and biology
to econophysics and even liquid water. Why
is this? One possible answer concerns the
way in which correlations spread through-
out a system comprising subunits in which
“everything depends on everything else.”

The paradox is simply stated: our intu-
ition suggests that the correlation C(r) be-
tween subunits separated by a distance r
should decay exponentially with r—for the
same reason the value of money stored in
your mattress decays exponentially with
time (each year it loses a constant fraction of
its worth). Thus, we might expect that C(r)
~ e−r/ξ, where ξ, the correlation length, is
the characteristic length scale above which
the correlation function is negligibly small.
Experiments and calculations on mathe-
matical models confirm that correlations
usually do decay exponentially. But, if the
system is at its critical point, the rapid ex-
ponential decay magically turns into a long-
range power-law decay: magically ξ → ∞.

So then how can correlations actually
propagate an infinite distance, without re-

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

101

Price changes (in standard deviations)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Positive tail

Negative tail

–3

–2

Levy regime

Figure 1. A log-log plot of the cumulative probability distribution P(g) of the normal-
ized price increments where g is calculated in units of a standard deviation. The lines
are power-law fits to the data over the range from two to 100 standard deviations.
The regression lines yield α = 2.93 and α = 3.02 for the positive and negative tails. (Fig-
ure courtesy of Parameswaran Gopikrishnan, Luis A.N. Amaral, and Martin Meyer.)

E S S A Y S

.



JANUARY–FEBRUARY 1999 77

quiring a series of amplification stations all
along the way? We can understand such
“infinite-range propagation” as arising
from the huge multiplicity of interaction
paths that connect two spins. The correla-
tion between two spins along each of the
interaction paths that connect them de-
creases exponentially with the path’s length.
On the other hand, the number of such in-
teraction paths increases exponentially, with
a characteristic length that is temperature-
independent, depending primarily on the
lattice dimension. This exponential in-
crease is multiplied by a “gently decaying”
power law that is negligible except for one
special circumstance—the critical point.
Right at the critical point, the gently de-
caying power-law correction factor in the
number of interaction paths, normally neg-
ligible, emerges as the victor in this stand-
off between the two warring exponential ef-
fects. So, two spins are well-correlated even
at an arbitrarily large separation.

Will the power laws found empirically to
describe complex economic systems ever be
understood in analogous terms? We will
see—as the flip saying goes, “stay tuned.”
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WHY SEX—ARE MEN
USEFUL FOR ANYTHING?
Dietrich Stauffer

SEX HAS BEEN QUITE IMPORTANT IN 1998, IF FOR NO OTHER

REASON THAN  TO REDUCE UNEMPLOYMENT FOR THE NEWS

MEDIA NEAR WASHINGTON, DC. BUT THE FIRST SMALL ANIMALS OR

PLANTS COULD HARDLY HAVE PREDICTED THIS EFFECT HUNDREDS 

of million years ago. Why did they deviate from the traditional bacterial behav-
ior of replicating by splitting? Is there an evolutionary advantage of sexual over
asexual reproduction?

A special “Evolution of Sex” section in Science magazine1 addressed the tradi-
tional arguments but failed to review recent computer simulations of this prob-
lem, starting with Rosemary Redfield.2 Any mutation that gives an advantage af-
ter thousands of generations but kills the population during the first few gen-
erations is not evolutionary realistic. Nature does not tunnel through a large en-
ergy barrier, and it did not learn multicanonical Ising simulations, nor has it in-
vented cluster-flip algorithms. Thus each small mutation should give an advan-
tage, or at least not too much of a disadvantage, to individuals with this mutation. 

Redfield’s elegant computer model assumed that every mutation reduces slightly
the survival probability (on average a child gets half of the maternal mutations and
half of the paternal mutations). 2 If the male and female mutation rate is the same,
then the child’s stationary survival probability is the same with both sexual and asex-
ual reproduction. Nevertheless, males give birth much more seldomly than they
drink beer while watching soccer, so Nature would be much better off without them.
(The female tradition of eating the no-longer-required male3 has yet to be adopted
widely.) Things get even worse if the male mutation rate is assumed as much higher
than the female one. In this case, sexual reproduction gives much lower offspring
survival rates than if females reproduced asexually for millions of years.

Obviously, Mother Nature did not read Redford’s article, because sex is quite
widespread among life on Earth. A Brazilian group found out why: Real muta-
tions can be divided into common recessive and rare dominant mutations. 4,5 Thus
the child of a father with eight and a mother with four bad mutations will not have
on average six bad mutations to reduce its survival chances. Instead, if among the
many genes of a species, one of the father’s differs from the corresponding one of
the mother’s, then it adversely affects the child only if the mutation is dominant.
Recessive mutations affect the child only if both parents had them. Eighty or 90
percent of real mutations are recessive, perhaps because the individuals with more
dangerous dominant mutations died long ago. As soon as the Brazilian group took
this aspect into account in the Redfield model,4,5 the advantages of sex became
very clear through improved survival rates, even if the male mutation rate was six
times higher than the female mutation rate. 

This distinction between recessive and dominant mutations is not a DNA re-
pair mechanism, nor does it remove bad mutations by death. It is merely a cover-
up—the hereditary disease that bad recessive mutations cause is stored in the child’s
genes. However, it does not affect the child’s health as long as one of the two sets
of genes (from both the mother and father) is still unmutated. It seems we men play

the role of back-up diskettes (for the main
disk represented by the female genome)—
normally useless, but helpful in case of acci-
dental loss of information. 

A more realistic simulation has to take
into account the various stages in an individ-
ual’s life—this means biological aging. Most
simulations use Penna’s bit-string model;6-8

one of the parent magazines9 of this new
magazine reviewed its asexual version. The
model was also applied to sexual reproduc-
tion.10,11 With sex included, the Fortran pro-
gram became much longer (200 lines) but
confirmed that sexual reproduction provides
higher survival probabilities than asexual re-
production. 4,5 Again, rare dominant muta-
tions were distinguished from more common
recessive ones. In line with the tradition of
aging theories, all mutations were assumed
detrimental. Positive mutations occur so sel-
domly that it took billions of years of evolu-
tion to produce Nature’s masterpiece, the
German Herr Professor.

Unfortunately, this justification of male
existence was questioned12 by the suggestion
that Nature should have widely adopted the
meiotic parthenogenesis compromise. Here,
no males are needed. Females have two sets
of genes in all their cells, and they pass on to
their offspring a random combination of
them, just as sexual production produces a
random combination of male and female
genes for the child—in short, a genetic al-
gorithm with only one sex. The information
is still stored twice, and an error in one of the
two sets of genes can still be covered up by
the same recessive-versus-dominant-muta-
tion trick. But now no males take food away
from the females without getting pregnant.
Simulations showed about the same survival
chances with meiotic parthenogenesis as
with sexual reproduction. So why didn’t Na-
ture follow this simple compromise?

The answer came quite late.13,14 Sex gives
more variety than meiotic parthenogenesis,
and this greater variety aids survival after cat-
astrophic environmental changes. Imagine
another big meteor like the one that killed

.
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the dinosaurs arrived not only in the movies
but actually to Earth. It would drastically re-
duce surface temperature because of the in-
creased dust and smoke levels. If all individ-
uals alive before the crash adjusted to the
same temperature, the species might die out.
If, thanks to the greater variety produced by
the sexual combination of different genes,
different individuals of the same species ad-
justed to different temperatures, some mi-
nority should survive. It was quite difficult for
J.S. Sa Martins and Suzana Moss de Oliveira9

to confirm this plausible speculation through
explicit Penna-model simulation of a sudden
catastrophe and compare meiotic partheno-
genesis with sexual reproduction. But even
sex did not help the dinosaurs survive the cat-
astrophic climate change. 

Why do women live longer than men?
Cebrat15 explained this effect through dom-
inant versus recessive mutations. Female
mammals have two X chromosomes, and
males combine one X with one Y chromo-
some. So a bad mutation in the X chromo-
some is usually recessive for females but is
always dominant for males. Computer sim-
ulations16 confirmed this idea and detailed
a male mortality twice as high as that of fe-
males, except for the highest ages where
equal rights prevail. Figure 1 shows how
similar this is to human reality. 

B iologists have debated for years about
why menopause exists. Why didn’t

evolution increase the population by giving
women the same possibility as men, who
can father children in their 80s? Or why
doesn’t Nature kill women after meno-
pause, similar to the rapid death of salmon
after reproduction? One reason4,5 why ge-
netics cannot kill women and leave men
alive after 50 years exists—which chromo-
some should store this genetically pro-
grammed suicide if males and females share
most of the genes? (This argument only ex-
plains how menopause is possible, not why
evolution prefers it.) Human civilization is

also hardly a reason for menopause. Analo-
gous effects are observed in most mammals,
provided they are protected against hunger
and predators.17 Presumably the best ex-
planation comes from a recent Penna-
type computer simulation,18 where the off-
spring’s need for some period of child care19

together with an increasing reproduction
risk that rises with age means a danger
arises from a greater possibility that child-
birth will kill the mother as she ages. This
combination causes the maximum age of
reproduction to self-organize to some in-
termediate age. 

Besides death or the deep impact of Ar-
mageddon meteors, studies have simulated
other activities more successfully, such as
female sexual infidelity. Solange Martins
and Thadeu Penna followed bird patterns
to present simulations detailing which fe-
males should conduct affairs with older
males. 20 This work might be a consolation
for men who don’t want to be regarded by
these computer simulations as merely an
insurance against catastrophic loss of infor-
mation or change of climate. Perhaps the
war between the sexes could end with
Suzana Moss de Oliveira’s peace proposal—
males are disgusting, yet necessary. 21
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