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§1. RWs on Deterministic Fractals

① introduction to deterministic fractals
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5
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Fractal self-similarity
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Re ̃ ∶ complex fractal dimension
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② RWs on deterministic fractals

2
1
2 : subdiff

Sierpinski Gasket ( 2, 3, ln 3 / ln 2)
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③ Simulation analysis of RWs on deterministic fractals

1 cos ln (10)

(Introducing complex fractal dimension on )

On checker board fractal

ln 15 / ln 3 2.46 (11)

(Exercise) Prove ln 15 / ln 3 on checker board 
fractal.
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( see Eq.(7) )
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§2. Linear Excitation on Disordered lattice; Fracton; Spectral 
dimension 

1d lattice vibration

,
1, 2 , 1, (11)

/

… …
1

1, Re	 	

1 2 1 /
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1d RW master equation

, 1
2 1, 2 , 1, (13)

, exp 2 (14)

the same eigenvalue equation with Eq. (12)

9



Lattice vibration on a cluster (fracton)

,
, , (15)

is the coordination number of the site in the cluster.
( : is the coordination number of the base lattice.)

exp (16)

( / )
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Density of states ̅ or in Eq (2) on nonrandom -dimension 
lattices.

				 → 0

( or ̅ )

(17)

Likewise on the cluster

					 → 0 (18)

→ spectral dimension of the cluster (or fractal) (19)
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(20)
, : if is connected.

§3. RWs on disordered lattice

“de Gennes → RW on disordered structure → Ant in labyrinth”

Hopping probability. , →

Blind ant (a) :

,
1

(21)

Myopic ant (b) :

, 0

(22)

Trapped ant (c):

RW disappears with , 1/ : if 
is disconnected.

→ (RW on the cluster disappears eventually.)
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, : if is connected.

, : if is connected.



(23)

Blind ant

, 1
, ,

. exp ̅

					 (16)

→	

(cf) Myopic ant

, 1
, ,

→ 	 	 1 46

(Believe that myopic have the same critical property as blind ant.)
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(26)

(25)

(24)

Lattice vibration

, Re ∗ exp , 0

Blind ant

, Re ∗ exp , 0

,
1 1

Re ∗ exp

0,
1

exp (27)

0, ̅ exp (28)
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(29)

↔

0, exp 2 ̅

		

0,
1

(30)

0, 	 exp

exp

(31)

2 / (32)
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0,
1 1

*

~ (# of distinct visited sites)

( * Spectral dimension)

* On nonrandom lattice,

2	 ∵ (33)
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§4. Random Resistor Network

: Resistance
: Conductivity

(bond ↔ const. resistance)

1 1 1
(34)

(35)

( ̅, ̅ : finite-size exponents)

̅ 2 ̅ (36)
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Einstein Relation

~ ~ (37)

, 2t

2 ̅ ̅ (38)

18



§5. RWs on Critical Percolation Clusters (CPCs)

* Cluster distribution function

(39)

= Prob. of the infinite cluster

= -sized cluster distribution function

* Average
Largest-cluster (LC) average

All-cluster (AC) average
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(Site percolation)



(40)

(41)

(42)

RWs on LC at 

LC → -sized cluster

: Radius of -cluster,

: 	 	 /

: 	

: fractal dimension of LC

RWs on ACs at 	~	

	 , /

/

From 1 / and /
1

1 /2
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RWs on LC and AC  at → and →

* for ,

∼ /

∼ /
(43)

regardless of → and →

* for and →

Infinite cluster 0
∼ /

→ (44)
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(48)

(47)

* for and →

Infinite cluster O ( 0).
homogeneous cluster

Euclidean space
(not fractal)

→	

D p t
(45)

0
(46)

, /

→ ̅

→ ∵

(49)
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(51)

Crossover scaling of 

/ (50)

ⅰ) 0 const

ⅱ) ∞, from	 44 	

ⅲ) ∞, 	from	 49 	

2 2/ 0

2/ 1

1 2
2

1
2

1 2 2

(52)

(53)
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Crossover time from fractal property to Euclidean (homogeneous) prop.

1 (54)

/ ( ~ )

0, / (LC)

0, / (AC)

2 /

2 /

(55)
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Alexander-Orbach conjecture

Percolation (Geometrical) Exponents

, , , ,

Dynamic Exponents

, ,

Relation

4
3

on CPC (56)

8
3

of any 1 6

No proof at all !!
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(59)

§6. , on CPC & fractals

,
1

/ /

/ / (57)

0 const.

exp (58)

1

1
1

min
min

min
min

1
1

(conjecture 1)

(conjecture 2)

(conjecture 3)
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is the fractal dimension of the chemical distance ℓ : ℓ~

ℓ

Flory approximation for SAWs on CPCs

ln ,

2
(60)

27



§7. Renormalization group for and 

* If one knows two among , , and , one knows all.

RG trans,

( : scaling factor) (61)

(fixed point ∗ 0	 → Laplacian property)

(62)

ln /	ln (63)
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Integrated density of states

̅

(64)

2 (65)

(66)

* RW → , ∼ exp

→ 1:

→ 1:

→ 1:
→ 		 	~	 		 →
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(Exercise) From the renormalization group scheme of the Sierpinski
gasket as in the following Figure, 

show 
① 5
② ln 5 / ln 2 , ln 9 / ln 5
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§8. First Passage Time on the Network (or graphs)

0 (67)

	 , 	

(68)



(70)
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0 (69)

≡ ∞

∞ → ∞
0 and → ∞ (1-(49))

∑ 1 	 1 !
(71)



(72)
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Degree distribution :
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§9. RWs and Structure of Complex Networks

① Networks

* Random Networks
Connect each pair of nodes with given probability 

Degree distribution : 	~	 ! 	

* Small-World (SW) Networks : Watts-Strogatz (WS) model

Interpolate between regular and random 
network

* Scale-free (SF) Networks

~
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② Random walks on SW networks

There is a characteristic time scale : 

1/ ( : rewiring probability → related to shortcut density)

≪ → the walker does not meet the shortcut → only see 
the regular structure

~

≫ → the walker can move to new region of networks

~

(1-27)

(1-27)

Average number of distinctive visited nodes
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③ Number of distinct visited sites : 

On SF networks,

/

	~	 1		
, ≪ 1
, ≫ 1

	~	

at saturates to a 
constant value

/
/
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④ Scaling relation for end-to end distance of RW on SF networks

4.3
	~	 1

( From the results on a Caylay tree, 
we expect that 1)

→ ∞ 	~	ℓ 1

(ℓ : the minimum distance averaged over all possible pairs of sites (or 
nodes))

does not increase indefinitely, but reaches a saturation value 
→ ∞ ~ℓ after a cross over time .
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⑤ Possible application of the scaling relation for of RW on SF 
networks

characterizes the time at which saturate or when the walker feels 
the finite-size

ℓ ℓ , /ℓ

	~	 const. 				
, ≪ 1
, ≫ 1.

ℓ , ~	 	~	 ln lnln 				 				
,2 3
, 3							

From this scaling relation we expect that 
the computing time needed for the 
measurement of scaling behavior of by 
RW method increases as 
O ln or O ln ln


