e Chapter 3. Variants of random walk
(Main Refs. [3], [*])

§ 1. Lévy flights.
§ 2. Walks with memory.
§ 3. Continuous time R.W.

§ 4. Generating function and RG.



§ 1. Levy flights (walks)

CLT o] =71 & philosophy 2 7t T X|= H&

=

p(u)7t power-lawE BH=ES|

— Lévy flight(walk) (LF)
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e 1st step

1
p(w) = Zu @M (4 > 0)

@D n>2 - my,m, exists
CLT — satisfied

— @ 1<n<2,m, or (u)? diverges.
CLT - unsatisfied

__® 0<n<1,bothm; and m, diverge.
CLT — unsatisfied

(1)

(2)

(3)

(4)



HeE ©2

PDF OfRZU1 + U, +---+u,

U, (N) = max(uq, Uy, ..., Uy,) (5)
Njoo p(wWdu =1 - u,,(N) = N/ (6)
Umn (N)
- plu>»u,(N),N)=0

* Biased LF for0<n <1

Um (N)
_ m _(NYn (n<1)
R= NJO up(u)du = {N InN (n=1) (7)



*LFforl<n <2
tm N2/ :1<n<?2

(AR)Zz(R_m))z:Nf NInN: 71 =2

(u = my)*pQw)du = |
0

((R) = Nm,), (d;, : fractal time of LF)

d, =1
* LF scaling

p(N)R)z \ 1

* LF on 2d, 3d space — Egs. (7), (8), (9), OK.

(8)

(9)

(Exercise) Prove (9) by simulation [(cf) (1-12)].




§ 2. Walks with memory

{Break the philosophy 3 of CLT

Memory or interaction effect

@ Persistent RW

Consider 1d RW for simplicity

_ t t+1
> > Q
— <€ 1-Q
t t+1
L < < Q

> 1-Q

Walker has the tendency to move in the same direction as it
moved at previous time — Markovian process of the second order




(L(N;n) : the prob. that a walker arrives at n after N steps with
the last step takes the left direction.

R(N;n) : the prob. that a walker arrives at n after N steps with
_ the last step takes the right direction.

Recursion relation

LIN+1;n) =QL(N;n+ 1)+ (1—Q)R(N;n+ 1)

RN+ 1;n) = QRW;n+ D+ (1 - QLWn+1) 19
1-0 1-0
P(n,N) = 27NO exp [—nz INO (11)

Persistent length : ¢, = X2, 2Q“(1 — Q) = & = N, (12)



Rescaling the number of step (time scale)
N N N

p  Np

n?2

1
P(0,N) ~ |- exp[- 2]

— Simple RWs

(13)

(Exercise) Prove Eq. (11)
(Exercise) From the persistent random walks, Show

OR(x,t) OR(x1)

v
[Telegraph} ot 0x

fquation | 51 t)  aL(x D)
+ v
dt 0x

= y(L(x, t) — R(x, t))

= y(R(x, t) — L(x, t))

By taking a continuous limit of space time




@ Self-avoiding walks (SAWSs)

{ Polymer in good solvent

Isolated (diluted) polymer
Break the philosophy 3

— Non-Markovian walks
(Excluded volume effects)
(Repulsive interactions between monomers)

— Walker cannot visit the already-visited sites, bonds, points, etc.

A—l
LX




SAWSs on lattices

15t theoretical version : Growing SAWs — Dead end problem

‘ \ 4
¢ — True self-avoiding walks?
< A 4

2nd theoretical version : Ensemble of N-step walks ( N-SAWSs)
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Consider 2"d version first

Iy ~NY~1ulN . # of possible N-SAWs (1-9)

* u : Effective coordination number
u<z-—1(z:coordination number of the lattice)

Rz = (R?) ~ N?V ( end-to-end distance ). (1-7)

2
Rg

— — 2 n —
%( ie1 (% — Ry) > (Ri = %Zi=1ui)
~ N?Y (radius of gyration)

1
(dSAW = > )



Essential properties of SAWSs

© PRN) =B~ L () (14)

(scaling property)
1/RZ ~ Normalization [[ d%R P(R,N) = 1]

f4

1 op(ex®)  fGO=xIexp(-x®)  (15)
/ §~1A—-v)" (16)
>x (By the mapping to n = 0 n-vector model)
@ \a
N step I (R =a) = <R5> (17)
SAW
(From uniform distribution of end points in the
w7 volume of RZ )
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g
P(a,N) = % <i> ~ N (18)

E R Rg

W@ 1
P(a,N) = Ijjlf,AW zR—gNl Y (19)
= VT_l (des Cloiseaux relation) (20)

From Egs (16), (20) - (y,v) - (v,v,8,9)
(Ref. [6]: Chapter 1)



Flory approximation

Free energy of polymers
F=E-TS

@ E : Repulsive interaction between monomer — Mean-field energy

N :
(p = —3 : monomer den51ty)

Effective range of repulsive interaction : ¢
€ : the energy for a pair of monomers

N? N?
E,, = eNpt? = % — = Creﬁ

7 = (21)
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@ Entropy term (S)

Sy(R) =1In JIn(R)

~InpV,R) gy (PN, R) =252

[Pure RW]

~ Inex ((@)] N

R2
~anN_CF

2

—TS = E,; = const. +C%

(Elastic energy of polymer)

)

(22)

(23)
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F=E-TS

N2 R2
= Cre Rd + C,y ~ + const (24)
oF 3
an = 71 5 ~NV 25
ar =V 7V =gy RN (25)
( 1 (d — 1) Vex = 1
T FT13/5 (@=3) | vex = 0.58 (26)

(1/2 (d=4) \Vex =1/2

* vp IS an amazing result considering the crude approximation of E,; &
E,..

* E,. Is overestimated due to the repulsion.

* Eel ~—TS - Srw > SSAWS



* Two overestimates of E,; & E,. interfere constructively
— vg IS a relatively exact result.

1
*d =24 vp =vsaw =5 (dyw = dsaw = 2)

SAW N2 2 d
max _— ~ Y
RW

E* is neglible if d > 4
(Excluded volume effect is negligible)

(d, = 4 : upper critical dimension)
(d; =1 : lower critical dimension)

— reminiscence of n-vector (Ising) model

(27)
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Mapping to n = 0 n-vector model

* n-vector model : classical model of ferromagnetism.
}[:-1257-?,-(—;125) (28)
(i)) L

— 2 —_—
IS;| =1,8,

(S},S%....S") = {S%}

n - 0 | A

sesern| =Y g ery (k=) @9
N

G(K,R) = ZJ’{;’AW(R)KN = generating function of walk models
N (K : fugacity)

(Exercise) Prove (29)
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Susceptibility

& D s @se )| =) F @K
R R N

(Fluctuation-Dissipation theorem)

= > TGN = > (Ru)UNr (30)
N N
_KC ~ % (Convergence radius)
T (31)
Lor T, = Ju/kg
[ T-T,

=t (Reduced temp.)

_ t - 0 (Critical regime)
K—-K.~—K.t > K =K_exp(—t)

x = Z exp(—NEt) NV 1 = j exp(—NEt) NY"1dN
0
N

x=tY 32
(32) 9



CR) = (S“OS“R)| = ) IFW(RIKY exp(~ND)
N

= KX f dN I (R) exp(=N¥t)
0

i Laplace transform of Jy*" (R) - C(R)

(N & t) - conjugate variables

(33)

(Exercise) Prove that § = (1 —v)~! (16) from

e ()

C(R) ~ RA-2+7n

and
E~tY

SAW
by using (33) and . P(R,N) ~ J—I(\;SAV(VR)
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€s

(5%OS“@)| = > KlIu(@)exp(~ND)

1
2

N

zJ(S(0)S(a)) (es: Exchange energy per spin )

~ f dN Jy(a)exp(—Nt)

~ t(1-

d&s —_
@) <ﬁ = Cheat =t a)

In(a) = N2~ N7V = % — Eq. (17) (~hyper scaling a = 2 —vd)

E
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Consider now growing version of walk models : 1st version

* Survival probability of SAWs at N-step.

JSAW ~
1 4

N
~ S(N) —

RW
N

* Dead end —» no more growth
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To circumvent the dead end. — True self-avoiding walks (TSAWSs)

(34)

. hopping probability to one of the nearest neighbor §(€ {@;}:i = 1, ..., 2d)

n(R + &) : the number that the walk has visited the site R + 6.

> 1
/‘> pNZ
(k = oo, TSAW)
1
I
\
\
2 d+ 2 Z:d=1
VTSAW:d—_l_Z dTSAW:T =13 (35)
2 :d>2 (dy=2)

23



(Exercise) Study the following walk models and investigating the
critical properties by simulation.

@ growing self-avoiding walks

(kinetic growth walks)

@ Indefinitely growing SAWs

@ Trail ( ©- collapse)

@ Hamiltonian walk

® Directed (Anisotropic) walk

Final remarks

* Ballistic motion vg =1
(VB = Vany)

* Super diffusion (v > %)

* Sub diffusion (v < %)
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§ 3. Continuous time R.W.

Break the philosophy @: RW can take variable time interval between
hops (steps) or RW can sit on a site for a
considerable time before leaving.

— continuous time RWs.

q(t)dt : the probability that RW leaves site at the time between t
and t + dt after arriving the site.

a(t) : The probability that RW does not take the step up to .

a(t) = 1_[(1 —q(t)dt;) (dti - 1)
i=1

m

25



m

a(t) = 1_[(1 — q(ti))dtl- = expl ln(l — q(ti))dtl- ‘
i=1

1=1

dti—>0

m
= exp (‘ CI(ti)dti>
im1

a(t) = exp (— jrq(t)dt>
0

* a(o) - 0, if foooq(t)dt — 00

RW leaves the site any-way.

* a(o0) - finite, if [~ q()dt = finite

RW has a finite probability to stay the site eternally.

(36)
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Then, the prob. that RW leaves the site at the interval (t;,t + dt;)

- a(ty)q(t)dty

Thus, the prob. that RW leaves the site

(o) o t1
- j a(ty)q(ty)dt, = j exp [‘f Cl(t)dt] q(ty)dty
0 0 0

= —exp [— fotl q(t)dt]‘;o
= a(0) — a()
=1 — a(oo)

(37)

(38)
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Furthermore, the prob. that RW takes a step at the time interval
(t,,t; + dt;) to a site with the relative position (7,7 + d7) is

p(#,t) = q(t)p(@)dt d?r. (39)

Then P(r,t) < exp (— zizzt) (my; =0)
2
2

X €xp (_ 27:125)

t (0/0)
<f — E’B = j a(t)dt, (timerescaling))
0

(40)

(Exercise) Prove (40) by using Laplace and Fourier transforms.

Anomalous effects comes when p(7, t is not separable as in Eqg. (39)
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(Exercise)

i ) Find P(n,t)on a regular comb with the sidebranches of length ¢
that are spaced at unit intervals on a backbone of linear chain.

A

-1 0 1 2 3 4

ii) Find P(n,t)on the bifurcating hierarchical comb like the
following figure

‘ 1

29



§ 4. Generating function and Renormalization group

GUO = ) Juk" (JN > ZJN(R)> (41)
N=1 R

(K : fugacity (Jy ~uNNY™1))

G(K) converges if uK <1 X
1w =1 Ky = —
-KC o ( g KC)
K=K _ . 5 _ Kc—K

30



GK) = [, KNuNNY=1dN
~ [ " exp(~KN)NY"*dN

G(K) =~ K™

Rg(N) = (R2)z ~ NV

_ INREMONY 'Y
Rg)yg = ==£ ~
( E)K G(K) ~ K v

(42)

(43)
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b¢ | b
Real space renormalization group of G(K) (RSRG) |[p2 | pd
Consider b%-size cell, (
— \'b N _ g/ N
= Gp(K) = Xx=1InK" =K K’ (44)
RS Renor.
K* = G,(K*) (45)
K* — fixed point
K* =K, (46)
K' =G, (K*) + — dGy K=K
b dK
=K~ K—-K* (47)
(Rpdy = (K* =K'V =b Y (K*—K)™ (48)
_Inb (. _dG,
Ty ~dK g (49)
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Small cell RG of SAWSs (Example)
—>b=2

(corner law) K'=K?+2K3 + K*

K* =0, 0.379
K*=0379 5 v =072 (vex =2)

[ Crude approximation

L Large cell Monte Carlo RG
— Needed
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